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ABSTRACT* 

The SNAP-8 Performance Potent ia l  Study i s  an evaluat ion of t h e  performance 

of t he  developmental SNAP-8 e l e c t r i c a l  generating system ( Z S ) .  

the  study i s  t o  assess  t h e  improvement i n  o v e r a l l  e f f ic iency ,  weight, r a d i a t o r  

a rea ,  and power output t h a t  can be rea l ized  by s p e c i f i e d  modifications of t he  system 

or i t s  components. This report ,  t h e  f i n a l  repor t  of t h e  study, descr ibes  t h e  work 
performed and the  r e s u l t s  obtained. 

compilation of the  current  SNAP-8 E S  are presented and compared with similar 

da ta  f o r  s i x  improved systems incorporating var ious modifications.  

The object ive of 

The performance c h a r a c t e r i s t i c s  and weight 

The study a l s o  included an inves t iga t ion  of t h e  SNAP-8 power system 

i n t e g r a t e d  with a direct-broadcast  TV s a t e l l i t e  vehic le  i n  synchronous o r b i t .  

Final ly ,  a n  assessment w a s  made o f  the p o t e n t i a l  f o r  increasing the  operating 

l i f e  of  t h e  SNAP-8 system from 10,000 t o  20,000 hours. 

s tud ie s  a l s o  a r e  given i n  the  repor t .  

The r e s u l t s  of these  

* 
NASA STAR Category 03. 
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I. SUMMARY 

A study of t h e  performance po ten t i a l  of t h e  SNAP-8 E l e c t r i c a l  Generating 

System (EGS) w a s  performed by the  Aerojet-General Corporation under cont rac t  t o  

the  National Aeronautics and Space Administration (NASA). 

s tudy was t o  evaluate  t h e  performance t h a t  can be a t t a i n e d  by spec i f i ed  system 

and component modifications and t o  compare t h e  computed performance t o  t h a t  of 

the  development SNAP-8 power system as thus far  demonstrated by t e s t .  This 

report ,  t he  f i n a l  r epor t  of t he  study, documents t h e  work performed and t h e  

r e s u l t s  obtained. 

The purpose of t h e  

The SNAP-8 EGS i s  a 35 kwe nuclear Rankine-cycle power system designed f o r  

SNAP-8 has space appl ica t ions .  Mercury is  used a s  t h e  two-phase working f l u i d .  

been under development s ince  1960 j o i n t l y  sponsored by NASA and t h e  Atomic Energy 

Commission (AEC). 

a continuous operat ing l i f e  of 10,000 hours. 

ments have been rev ised  t o  accommodate the  needs of manned appl ica t ions  as w e l l .  

It w a s  i n i t i a l l y  designed f o r  unmanned space missions and f o r  

I n  t h e  pas t  year  i t s  design require-  

A. ONETIVES AND GTJIDELINES OFTHE PERFORMANCE POTENTIAL STUDY 

Broadly, t h e  object ives  o f  t h e  s tudy are as fol lows:  

1. To evaluate  the  performance improvement p o t e n t i a l  of t h e  

SNAP-8 EGS. 
weight, r a d i a t o r  area, and power growth. 

In  t h i s  context of t h e  study, performance includes o v e r a l l  e f f ic iency ,  

2 .  To inves t iga t e  the in t eg ra t ion  of t h e  SNW-8 EGS i n  an utimanned 
7 

f l i g h t  vehic le .  For t h i s  purpose, a direct-broadcast  TV s a t e l l i t e  was chosen as 

t h e  mission model. 

3 .  To assess t h e  po ten t i a l  f o r  increas ing  the  operat ing l i f e  of 

SNAP-8 from 10,000 t o  20,000 hours. - 

1 
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In pursuing these  objec t ives  t h e  following s tudy guide l ines  were 

es tab l i shed  i n  order t o  maximize the  u t i l i t y  of t h e  s tudy r e s u l t s .  

I 1. The e x i s t i n g  SNAP-8 four-loop system with organic- lubricated 

b a l l  bearings and low-temperature e l e c t r i c a l  machinery was maintained. 

SNAP-8 four-loop system is  i l l u s t r a t e d  i n  a s impl i f i ed  schematic diagram 

(Figure 1). 

The 

0 
2. The nominal maximum system temperature of 1300 F w a s  used 

throughout t h e  study. 

3 .  Maximum reac to r  output was kept a t  600 kw thermal, con- 

s i s t e n t  with ex i s t ing  r eac to r  design. 

4. The power system configurat ion w a s  based on t h e  use of a 

Saturn-class  launch vehicle  and an unmanned mission. 

5 .  Radiator p rope r t i e s  were ca lcu la ted  on t h e  b a s i s  of a 300 

naut ical-mile  o rb i t  with maximum sun and e a r t h  inc ident  r a d i a t i o n  and with t h e  

recent  meteoroid f lux  and penet ra t ion  da ta  furnished by NASA, L e w i s  Research 

Center ( L~RC) . 

a 
B. STUDY PLAN I 

6 .  Power system requirements such a s  nuclear  r ad ia t ion  l e v e l s ,  

output power cha rac t e r i s t i c s ,  and launch environmental s t r u c t u r a l  loads conform 

t o  NASA SNAP-8 Specif icat ions,  Series 417. 

1. Baseline System 

The f irst  t a sk  of t h e  study was t h e  cha rac t e r i za t ion  of t h e  

I 
8 

base l ine  system, t h e  e x i s t i n g  developmental SNAP-8. 

nated EGS-0) w a s  defined by compiling ava i l ab le  tes t  da ta ,  supplementing t h i s  

with d e t a i l e d  design data ,  and then  developing a r ep resen ta t ive  f l i g h t  configura- 

t i o n  of t h e  complete power system. 

The base l ine  EGS* (desig-  

a .  The configurat ion 'was se l ec t ed  f o r  an unmanned low- 
o r b i t a l  mission and on t h e  b a s i s  of compat ib i l i ty  w i t h  t h e  Saturn s-IVB upper 

* 
The term M;S designates t h e  complete power system, inc luding  t h e  nuclear  systems 
( r eac to r  and sh ie ld ) ,  t h e  power conversion system (PCS), and t h e  r a d i a t o r  assembly- 

2 
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s tage .  

w a s  adopted. 

cen ter  l i n e  and the  e l ec t ron ic  payload loca ted  adjacent  t o  t h e  S-IVB mounting 

plane.  The configurat ion i s  sketched i n  Figure 2. 

A conica l  shape with a 9.75 degree cone half-angle  and a 56-ft length  

There i s  a separa t ion  dis tance of 50 f t  between t h e  r eac to r  

b .  Reactor and sh ie ld  da ta  were based on t h e  e x i s t i n g  

Atomics-International ( A I )  design, designated S8DS (Reference 1) The 

s h i e l d  s i z e  w a s  ad jus ted  s o  t h a t  i t  would conform t o  t h e  se l ec t ed  configurat ion.  

2. Improved Systems 

Six improved SNAP-8 systems (designated EGS-1 through -6) 
were synthesized by means of a s teady-state  ana lys i s  and a d e t a i l e d  weight 

breakdown; the  s i x  improved systems incorporate var ious modifications from the  

base l ine  EGS, and are based on the  configuration described above. In  a l l  

cases t h e r e  were no changes i n  t h e  nominal maximum system temperature of 1300 F. 

The purpose i n  examining s i x  d i f f e ren t  systems w a s  p a r t l y  t o  i s o l a t e  t h e  e f f e c t s  

of t he  var ious changes and p a r t l y  t o  develop in t e r im  r e s u l t s  before a l l  of t h e  

modifications were completely analyzed. The r e s u l t s  of t h e  first three  improved 

systems were reported i n  the  mid-term repor t  of t h e  s tudy (Reference 2 ) .  

chief  f ea tu re s  of t h e  improved systems a r e  summarized i n  Table 1. 

3 e 

0 

The 

Appli ca t  ion  Study_ 

A study of t h e  in tegra t ion  of t he  SNAP-8 EGS with a d i r e c t -  

broadcast  TV s a t e l l i t e  was conducted t o  evaluate  t h e  e f f e c t  of the  mission on 

t h e  EGS and t h e  e f f ec t  of t he  M;S on t h e  mission, t o  i d e n t i f y  c r i t i c a l  i n t e r -  

faces  and in t eg ra t ion  problems, and t o  develop a conceptual vehic le  design and 

genera l  performance information. The EGS-4 power system w a s  se lec ted  f o r  t h e  

vehic le  i n t eg ra t ion  ana lys i s .  

4. Assessment of 20,000-hour Life Po ten t i a l  of SNAP-8 

A b r i e f  ana lys i s  was made t o  a s ses s  the  l i f e - l i m i t i n g  components 

of t h e  SNAP-8 PCS; i . e . ,  i d e n t i f y  po ten t i a l  fa i lure  modes and probable so lu t ions  

requi red  t o  extend the  operat ing l i f e  of t he  power system from 10,000 t o  20,000 

hours. 

3 
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C. SUMMARY RESULTS 

1. Performance Improvement 

The major power system performance parameters a r e  t abu la t ed  

i n  Table 2 f o r  the base l ine  system and the  s i x  improved systems. 

i nd ica t e  r e l a t i v e l y  small incremental  improvements i n  each system compared t o  

i t s  immediate predecessor; however, when t h e  change i n  t h e  la ter  systems i s  

compared t o  t h e  basel ine system, t h e  improvement i n  performance i s  l a rge .  

ove ra l l  change i n  performance may be seen from t h e  following: 

The da ta  

The 

M;s-0 ES-5  EGS-6 
Baseline 40 kwe Max kwe 

Overall  Efficiency, 8 7.0 
Weight, lb 11,000 

1,433 
Output Power, kwe 36 

2 Radiator Area, f t  

10.9 
8,700 

080 
40 

a. It i s  of i n t e r e s t  t o  examine t h e  f a c t o r s  cont r ibu t ing  

t o  the  improvement i n  e f f i c i ency .  

Rankine cycle e f f ic iency ,  t u rb ine  e f f ic iency ,  a l t e r n a t o r  e f f i c i ency ,  and para- 

s i t i c  eff ieciency" we f i n d  t h a t  t h e  change i n  o v e r a l l  e f f i c i e n c y  of 7$ t o  10.9% 
i s  a t t r i b u t a b l e  t o  t he  following changes i n  t he  subordinate e f f i c i e n c i e s .  

Considering e f f i c i e n c y  as t h e  product of 

M;s-0 E S - 5  

Cycle e f f i c i ency  .24 .26 
Turbine e f f i c i ency  .54 *59 
Alternator  e f f i c i ency  .86 90 

P a r a s i t i c  e f f i c i ency  .65 -79 

Cycle e f f i c i ency  i s  increased by r a i s i n g  tu rb ine  i n l e t  
pressure from 240 t o  350 ps ia ;  t u rb ine  e f f i c i ency  i s  increased by t h e  aero-  

dynamic design improvements of t h e  turb ine ;  a l t e r n a t o r  e f f i c i e n c y  i s  increased 

by using capaci tors  t o  co r rec t  t h e  load power f a c t o r  from .65 t o  1.0; p a r a s i t i c  

* 
P a r a s i t i c  e f f ic iency  i s  defined as t h e  r a t i o  of ne t  power ava i l ab le  t o  t h e  
vehic le  t o  gross a l t e r n a t o r  output power. 

t 
I 
I 
s 

8 
a 
I 
8 

m 

4 
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e f f i c i ency  i s  increased by many small changes, t h e  most important of which 

a r e  reduct ion of NaK pumping power and e l e c t r i c a l  con t ro l  l o s s e s .  

Overall e f f ic iency  i s  not important per  se ,  but i s  

s i g n i f i c a n t  as a means of obtaining other performance gains .  

r a d i a t o r  a r e a  i s  accomplished pr imari ly  through e f f i c i ency  improvement, 

thereby requi r ing  less heat  t o  be r e j ec t ed  by t h e  r a d i a t o r .  Weight i s  r e l a t e d  

t o  e f f i c i ency  through r a d i a t o r  a rea  since t h e  r a d i a t o r  i s  an important weight 

cont r ibu tor .  Power growth p o t e n t i a l  is dependent upon e f f i c i e n c y  s ince  the  

r eac to r  i s  present ly  designed f o r  600 kwt. 

Reduction i n  

b. Looking a t  the  weight values  reported i n  Table 2, 

when t h e  t o t a l  weight f o r  ES-0  (11,000 l b )  i s  compared with t h e  weight f o r  

G S - 5  (8,700 l b ) ,  a weight reduction of 2,300 l b  i s  noted. 

weight reduct ion by major subsystems i s  derived from Table 3, a s  fol lows:  

A breakout of t h i s  

Net Change EGS-0 E S - 5  

Nuclear system 110 l b  2340 l b  2230 l b  

Fkdiator Assembly 610 l b  2440 l b  1830 l b  

PC s 1590 l b  6230 l b  4640 l b  

The nuc lear  system weight reduction i s  due t o  minor adjustments i n  s h i e l d  th i ck -  

ness i n  conformance t o  r eac to r  thermal power. The weight reduct ion ind ica ted  f o r  

t he  r a d i a t o r s  i s  due t o  reductions i n  t h e  required heat  r e j e c t i o n  and a small 

increase  i n  t h e  e f f e c t i v e  r a d i a t i n g  temperature. The weight reduct ion i n  t h e  

PCS i s  due l a r g e l y  t o  a change i n  the s t r u c t u r a l  concept. Excluding t h e  

s t ruc tu re ,  t h e  ne t  change i n  PCS weight i s  485 l b  which represents  a decrease 

of approximately 12%. 

weight ana lys i s  of a l l  the  components, except t h e  s t r u c t u r e ,  i s  seen t o  be l e s s  

than t h e  weight reduction i n  t h e  r a d i a t o r  due t o  e f f i c i ency  improvements. 

Hence, the  weight reduct ion of t h e  PCS, obtained by a 

e.  Note i n  Table 2 t h e  r a d i a t o r  a rea  reduction from 1430 s q  

f t  f o r  EGS-0 t o  890 sq  f t  f o r  EGS-5. 

by reducing t o t a l  heat  r e j e c t i o n  from 460 t o  316 kwt f o r  t h e  combined heat  

r e j e c t i o n  loop (HRL) and lubricant /coolant  (L/C) r ad ia to r s ,  by increas ing  t h e  

NaK o u t l e t  temperature of t h e  HRL r ad ia to r  from 488 t o  510 F, and by t r a n s f e r r i n g  

approximately 2 kw from the  L/C r ad ia to r  t o  t he  HRL r a d i a t o r  where t h e  e f f e c t i v e  

The reduct ion i n  a rea  has been achieved 

0 
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heat  t r a n s f e r  is much higher.  

t h e  NaK pump motor assemblies a t  500°F by means of t h e  HRL NaK. 

t h e  study, t h e  configuration and dimensional p rope r t i e s  of t h e  two r a d i a t o r s  

were maintained constant.  

f o r  t h e  p a r t i c u l a r  condi t ions per ta in ing  t o  each system. 

c h a r a c t e r i s t i c s  for t he  HRL and L/C r a d i a t o r s  a r e  summarized i n  Figures 3 and 

4. 

The l a t t e r  change is  accomplished by cool ing 

Throughout 

No attempt was made t o  optimize r a d i a t o r  design 

The r a d i a t o r  

d. The power growth p o t e n t i a l  represented by ES-6 i n  

Table 2 a l s o  i s  highly s i g n i f i c a n t .  

ne t  power output i s  seen f o r  v i r t u a l l y  t h e  same r a d i a t o r  a rea  and weight ( i f  

t h e  s t r u c t u r e  weight reduction i s  excluded).  In  order t o  r e a l i z e  t h e  ind ica t ed  

power growth, it i s  necessary t o  enlarge t h e  f l u i d  flow passages of t h e  present  

SNAP-8 turb ine ,  b o i l e r  and condenser by about 20% and t o  design t h e  NaK pump 

motor assemblies t o  new flow and pressure r i s e  requirements.  These changes, 

of  course, necess i t a t e  dimensional design modif icat ions of PCS components but 

do not e n t a i l  major development e f f o r t .  

a l t e r n a t o r ,  mercury EMA, L/C PMA, or  space s e a l s .  

Comparing EEs-6 with EES-0 a doubling of 

No modification i s  requi red  t o  t h e  

e .  I n  the  l a t t e r  phase of t h e  performance improvement 

ana lys i s ,  severa l  o ther  component changes were explored. 

evaluat ion of a mercury j e t  pump t o  replace t h e  motor-driven mercury pump. 

This i s  a promising concept because a l l  of t h e  lo s ses  assoc ia ted  with t h e  j e t  

pump a r e  returned t o  t h e  system i n  t h e  fo rm of s ens ib l e  heat  imparted t o  t h e  

mercury stream. 

synthes is ,  however, because of (a) extensive development required,  and ( b )  

i t s  poss ib le  impact on s t a r t u p  procedures. 

ana lys i s  than the present  study permitted.  

lyzed but not adopted a r e  a high-temperature (600 t o  TOO F) a l t e r n a t o r ,  an 

induct ion a l t e r n a t o r ,  a mercury pump d i r ec t -d r iven  by t h e  tu rb ine  or a l t e r n a t o r ,  

and a vapor-chamber f i n  r a d i a t o r .  I n  general ,  it w a s  found that t h e  gains  

a t t a i n a b l e  by these modifications were small i n  r e l a t i o n  t o  t h e  a t tendant  

development problems. 

Among these  w a s  an 

' 

The j e t  pump system was not incorporated i n  the  f i n a l  system 

The la t ter  requi red  a more extensive 

Other changes which have been ana- 
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2. sMP-8/TV S a t e l l i t e  In t eg ra t ion  Study 

The in t eg ra t ion  of sMP-8 i n  a direct-broadcast  TV s a t e l l i t e  

w a s  evaluated by developing a conceptual vehic le  design and general  performance 

c h a r a c t e r i s t i c s ,  and by analyzing environmental f a c t o r s ,  power system/payload 

in t e r f aces ,  hea t  r e j e c t i o n  and a t t i t u d e  con t ro l  requirements. 

based on t h e  EGS-4 system defined i n  t h e  performance improvement t a sk .  

power of  35 kwe t o  the  payload was assumed ( leaving  a 5 kw margin f o r  power 

degradation o r  o ther  cont ingencies) .  

compatible with t h e  Saturn S-IVB upper s tage .  

for lower inc ident  r ad ia t ion  t o  the  vehic le  from t h e  e a r t h ,  compatible with a 

22,300 m i l e  synchronous o r b i t .  

The study w a s  

A ne t  

The vehic le  was designed t o  be dimensionally 

The r a d i a t o r  a r eas  were ad jus ted  

The vehic le  data generated i n  t h e  study a r e  summarized below: 

Vehicle length 59 ft 
Configuration : 

Upper 31 f t  Conical, 35' i n c l .  angle 

Lower 24 f t  C y l h d r i c a l ,  21.7 f t  d ia  

Launch weight 17,100 l b  

Orbiting weight 15,000 l b  

Antenna dia  34 f t  (deployed) 

Avai lable  rad ia tor  

sur face  area 1900 s q  f t  

Nuclear r ad ia t ion  l e v e l s  and s a t e l l i t e  po in t ing  accuracy were se l ec t ed  pr imar i ly  

t o  provide a b a s i s  f o r  es t imat ing  weights, and e s t ab l i sh ing  an  o v e r a l l  he ight  

(on t h e  launch v e h i c l e )  of t h e  sa te l l i t e -power  system assembly. In  add i t ion ,  

t o  eliminate t h e  necess i ty  of considering a r a d i a t i o n  s c a t t e r i n g  ana lys i s ,  it was 

assumed t h a t  t h e  parabol ic  antenna would be e n t i r e l y  wi th in  the  s h i e l d  cone 

angle .  

t h a t  t h e  t o t a l  weight of t h e  assembly (and i t s  o v e r a l l  h e i g h t )  could be reduced 

a l i t t l e  by d e t a i l e d  configurat ion and r ad ia t ion  s tud ie s .  

On t h i s  b a s i s ,  t h e  r e s u l t s  a r e  judged t o  be conservative; it i s  poss ib le  

The vehic le  weights were ca l cu la t ed  f o r  a 10,000-hour operat ing 

l i f e  without redundancy of e i t h e r  power system or TV system. On t h a t  b a s i s ,  the  

7 
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launch weight given above i s  about twice the  c a p a b i l i t y  of t he  present  Saturn I B  

and less than 30% of the  Saturn V capabi l i ty .  It was of in te res t ,  t h e r e f o r e ,  t o  

es t imate  what addi t ional  launch weight could provide i n  increased power and 

r e l i a b i l i t y  (through redundancy). 

of the  bas ic  vehicle data t o  i l l u s t r a t e  poss ib le  growth p o t e n t i a l  within the  

Saturn V l i f t  capabi l i ty .  

The following t a b l e  gives a rough ex t rapola t ion  

SNAP - 8 Composition EGS -4 EGS -6 2 x EGS-6 
Power output , kwe 35 70 140 

Launch weight, l b  

Without redundancy 17,000 20 , 000 40,000 

With redundancy* 22 J 000 26,000 52,000 

Vehicle length,  ft 59 62 68 
Radiator a rea ,  sq f t  1250 2100 4200 

Antenna dia .  , ft 34 27 22 

* 
includes inac t ive  PCS, r a d i a t o r  tubes,  and k lys t ron  tubes 

No objectionable in t e r f ace  problems were uncovered i n  t h e  

study. The sh ie ld  was s i z e d  t o  l i m i t  the  r a d i a t i o n  dose a t  t he  payload t o  

10l1 nvt and 10 

components are designed t o  withstand. 

dose can be reduced one order of magnitude by increasing s h i e l d  weight about 

1000 lb .  

r a d i a t o r  and c i rcu la t ion  system f o r  t he  TV system, (2)  by separa t ing  the  TV 

system from the hot  port ions of the  power system, and ( 3 )  by inves t ing  100 l b  

i n  a thermal insu la t ion  diaphragm between the PCS and the  TV system. 

cont ro l  and s t a t i o n  keeping requirements a r e  m e t  by a r e a c t i v e  t h r u s t  system. 

For s impl i c i ty ,  t he  t h r u s t  system w a s  based on the  use of monopropellant 

hydrazine pressurized by nitrogen. 

hours l i f e  could be r e a l i z e d  by s e l e c t i n g  a h ighe r  performance bi-propel lant  

t h r u s t  sys tem. 

6 rad ( c )  gamma, values which the  power system e l e c t r o n i c  

If necessary , t h e  payload r a d i a t i o n  

T h e m 1  management i s  accounted f o r  by (1) providing a separate  

At t i tude  

A weight saving of about 400 l b  f o r  10,000 

One element of t he  power system cont r ibu t ing  t o  a t t i t u d e  

disturbance of the  vehicle  i s  t h e  angular  momentum of t'ne r o t a t i n g  masses 

8 
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(both s o l i d  and l i q u i d )  i n  the  PCS. 

l a r g e  f a c t o r  i n  t o t a l  a t t i t u d e  control  (it might requi re  100 lb of mono- 

propel lan t  f o r  a 10,000 hour mission),  bu t  t h e  study a l s o  ind ica t ed  t h a t  t he  

angular  momentum of t h e  power system could be i n t e r n a l l y  balanced. 

o r i en t ing  a l l  s o l i d  r o t a t i n g  components p a r a l l e l  t o  t h e  major a x i s  of t he  

vehic le  so  t h a t  t h e  lesser components counteract t he  l a r g e s t  one ( the  turb ine-  

a l t e r n a t o r  assembly) , and by f u r t h e r  counteract ing the  remaining unbalanced 

momentum by t h e  primary NaK piping,  it was concluded t h a t  a v i r t u a l  balance 

could be achieved by the  addi t ion  of about 30 f t  of piping a t  a weight pena l ty  

of 60 l b .  

Analysis ind ica ted  t h a t  t h i s  i s  not a 

By 

I n  summary, no ser ious in t eg ra t ion  or i n t e r f a c e  problems 

were found i n  t h i s  appl ica t ion  study. However, it i s  evident  t h a t  h igher  power 

and longer  l i f e  a r e  important avenues f o r  f u r t h e r  evaluat ion.  

3 .  Assessment of 20,000-hour Li fe  P o t e n t i a l  of sWP-8 

To assess  the  po ten t i a l  f o r  extended l i f e  of t he  s ~ p - 8  system, 

t h e  components of t h e  PCS were examined t o  i d e n t i f y ,  i f  poss ib l e ,  those components 

which a r e  l i f e - l i m i t i n g .  

major i ty  of components, the  present s tudy i s  necessar i ly  specula t ive  and 

q u a l i t a t i v e .  

w a s  made of t h e  components judged most subjec t  t o  wear-out f a i l u r e  i n  less 

than  20,000 hours. 

Since f a i l u r e  modes have not been i d e n t i f i e d  f o r  t he  

With t h i s  qua l i f i ca t ion ,  t he  assessment summarized i n  Table 4 

Examination of the  l i s t  of f a i l u r e  modes and probable so lu t ions  

i n  Table 4 on t h e  b a s i s  of present knowledge e s t ab l i shes  t h a t  t he re  i s  no evidence 

t h a t  components, e t c . ,  which have demonstrated 10,000 hours of l i f e  cannot a t t a i n  

20,000 hours l i f e ,  with or without some minor modification. 

appear t h a t  a severe penalty i n  weight and performance must be pa id  as the  

p r i c e  f o r  a t t a i n i n g  longer l i fe .  

mode and mean-time-to-failure i s  e s s e n t i a l  t o  a quan t i t a t ive  assessment of 

operat ing l i f e  po ten t i a l .  

Nei ther  does it 

However, t he  i d e n t i f i c a t i o n  of t r u e - f a i l u r e  

D. CONCLUSIONS OF THE STUDY 

The f indings of t he  study l ead  t o  the  following general  conclusions: 

9 
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1. Large gains i n  SNAP-8 system performance appear a t t a i n a b l e  

without sweeping redesign of t he  system or components and without advance i n  

t h e  s t a t e  of the a r t .  

( i n  cos t  and time) required t o  e f f e c t  redesign where ind ica ted  and v e r i f y  

through tes t  programs. 

No est imat ion has been made, however, of t h e  e f f o r t  

2. 

s a t e l l i t e  appears f eas ib l e .  

payload and a l l  i n t e g r a t i o n  aspects  s tud ied  between t h e  subsystems and t h e  

launch vehic le  appear suscept ib le  t o  s t r a i g h t  forward engineering so lu t ions .  

The s tudy ind ica tes ,  however, t h a t  t he  considerat ion of using a nuc lear  power 

system with such a s a t e l l i t e  w i l l  r equi re  considerat ion of Saturn c l a s s  boos te rs .  

The in t eg ra t ion  of t he  SNAP-8 power system i n  an unmanned TV 

A l l  i n t e r f aces  between the  power system and TV 

3.  The extension of sNAp-8 operat ing l i f e  from 10,000 t o  20,000 

No fundamental b a r r i e r s  t o  preclude at ta inment  of t h e  hours appears f eas ib l e .  

longer  l i f e  were found, based on present ly-ava i lab le  information. Moreover, it 
appears t h a t  achievement of t he  20,000-hour l i f e  need have only a small impact 

on weight and performance. 

10 
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11. INTRODUCTION 

me SNAP-8 Performance Po ten t i a l  Study serves  an  important func t ion ,  

supplemental t o  t h e  SNAP-8 Development Program, i n  providing a b a s i s  f o r  

p ro jec t ing  the  performance of t he  system beyond t h e  immediate development 

l i m i t a t i o n s .  I n  eva lua t ing  the  competitive mer i t s  of candidate power systems, 

a t t a i n a b l e  f l ight system performance becomes an  important c r i t e r i a  a performance 

comparisons between a SNAP-8 EGS based on ground test  developmental components 

and a conpet i t ive  power system Sased on paper designs of advanced technology 

a r e  not  r e a l i s t i c .  The i n t e n t  of t h i s  s tudy,  t he re fo re ,  i s  t o  examine and 

doe.ment a p ro jec t ion  of SNAP-8 EGS performance t h a t  i s  t h e  l o g i c a l  extension 

of t h e  cur ren t  development e f f o r t ,  and thereby provide a usefu l  a i d  t o  mission 

planners  

A. S-NAP-8 AND ITS DEVELOPMENT 

The SNAP-8 i s  a t u rboe lec t r i c ,  nuclear ,  space power system using a 

niercury Rankine cycle .  

(1) a nuclear  system cons is t ing  of" a r eac to r ,  r eac to r  con t ro l s ,  and sh ie ld ing;  

( 2 )  a f l i g h t  r a d i a t o r  assembly cons is t ing  of r a d i a t o r  hea t  exchangers requi red  

t o  remove hea t  from t h e  l i q u i d  cooling loops; and ( 3 )  t h e  PCS, cons i s t ing  of 

t u r b t n e - a l t e r n a t o r  assembly (TAA) 

a s sexb l i e s  (PMA's ) and necessary controls  p ip ing ,  and s t r u c t u r e .  The sNAp-8 
nuelear  system i s  being developed by Atomics I n t e r n a t i o n a l  Divis ion of  North 

American Aviat ion,  Inc.  under contract  t o  the  AEC. The PCS and the  i n t e g r a t i o n  

of t h e  PCS with the  nuclear  system i s  the  r e s p o n s i b i l i t y  of Aerojet-General 

Corporation, Von Karman Center, under cont rac t  t o  NASA. Development of the  

r a d i a t o r  assembly i s  not a p a r t  of the  cur ren t  progran. 

The system i s  comprised of t h ree  major subsystems: 

b o i l e r ,  condenser, mercury and NaK pump-motor 

The EGS i s  designed. t o  operate continuously f o r  10,000 hours i n  

space a f t e r  a remote automatic a t a r t zp .  

system i s  35 kw. 

The ne t  e l e c t r r c a l  output of t h e  SNAP-8 

Figure 1 shows schematically t h e  func t iona l  arrangement of t h e  

four-loop SNAP-8 system. 

hea t  t o  space,  t h e r e  a r e  two d i s t i n c t  r a d i a t i n g  elements i n  t h e  flight r a d i a t o r  

Since 'both t h e  t h i r d  and fou r th  loops must r e j e c t  

11 
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assembly. 

temperatures i n  t he  range of 500 t o  TOOOF. 
from t he  organic l u b r i c a t i n g  loop a t  temperatures i n  the  range of 200 t o  250°F, 

The f i r s t  element r e j e c t s  t he  hea t  from the NaK H a  of t h e  PCS a t  
The second element r e j e c t s  hea t  

The early development phase of SNAP-8, wherein t h e  major components 8 
s t a t u s  of t he  program. I 
were designed and t e s t e d ,  has been completed. Reference 3 describes t h e  cur ren t  

12 



Report No. 3386 

111. FUTDMNTAL DATA APPLICABLE TO ALL SYSTEMS STUDIED 

This sec t ion  i s  concerned w i t h  c e r t a i n  bas i c  information which had t o  be 

defined before  the  systems t o  be s tudied could be analyzed. I n  some cases ,  t h e  

Pnformation set f o r t h  below is based on source ma te r i a l  i n  conformance t o  the  

s tudy ground ru l e s .  I n  o the r  cases,  t he  data  were a r b i t r a r i l y  chosen i n  order  

t o  a f f o r d  a reasonable b a s i s  f o r  comparison of performance of t he  var ious systems. 

I n  a l l  cases ,  t he  data are iden t i f i ed  i n  the  context of t h e  systems t o  which they 

apply,  and sources of information are  i d e n t i f i e d .  

A.  BASIC CONFIGURATION 

One of" t h e  f i r s t  t a sks  of the  study w a s  t o  e s t a b l i s h  a s u i t a b l e  

configurat ion appl icable  t o  a l l  of the  s ~ A p - 8  EGS's t o  be examined. 

necessary because some aspecks of performance, notably weight, a r e  dependent 

upon t h e  configuration. 

criteria: 

This was 

The selected configurat ion 78s based on the  following 

1. A f l i g h t  vehic le  for an  unmanned mission. This implies t h e  

w e  of a shad.ow s h i e l d  of minimum dimension but  of s u f f i c i e n t  thickness  t o  

provide the  necessary r ad ia t ion  environment f o r  t he  more s e n s i t i v e  payload 

cornponent;s 

2. Use of a Sa twn-c lass  launch vehicle;  i . e . ,  a vehic le  which 

will use t h e  S-IVE upper s tage .  

3 .  Suf f i c i en t  surface a rea  t o  provide f o r  r e j e c t i o n  of t he  

secessary  hea t  by means of rad ia tors  mounted on t h e  sur face  of t he  vehic le .  

%he configurat ion se lec ted  on t he  basis o f  these  c r i t e r i a  I s  shown 

i n  Figure 2 -  

degrees and an  ove ra l l  length of 56 f t .  

t h e  mcnnting r i n g  f o r  an  e l ec t ron ic  payload, t he re  i s  a separa t ion  d is tance  

of 50 ft  between the  cen te r  of t h e  r eac to r  and the  top  of t he  payload which 

provides a basis f o r  ca l cu la t ing  sh ie ld  thickness .  Due t o  t h e  second order  

e f f e c t  of va r i a t ions  i n  r eac to r  power, s h i e l d  thickness  and, therefore ,  s h i e l d  

w e i g h t  vary only s l i g h t l y  from one system t o  another.  

s e l e c t e d  configurat ion i s  suf f ic ien t  t o  accommodate t h e  r a d i a t o r  a rea  of a l l  

It is  a simple conical shape with a n  included angle  of 19.5 
Allowing a reasonable space above 

The surface of t he  
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of  t he  systems s tudied .  For systems r equ i r ing  less r a d i a t o r  a r e a ,  t he  base of 

t he  r a d i a t o r  w i l l  be loca t ed  c l o s e r  t o  t h e  small end of t he  cone. 

t he re  i s  a var iab le  space between the  base of t he  r a d i a t o r  and the  S-IVB mounting 

r ing  which must be occupied by a s u i t a b l e  s t r u c t u r e .  This a d d i t i o n a l  s t r u c t u r e  

i s  not  included i n  the  weights of t he  SNAP-8 power systems. 

Consequently, 

B. REACTOR AND SHIELD 

The base l ine  performance data f o r  r e a c t o r  and s h i e l d  used throughout 

t h e  s tudy are based on information published or otherwise made a v a i l a b l e  by 

Atomics In t e rna t iona l .  

EGS-1, -2, and -3, t h e  r e a c t o r  and s h i e l d  c h a r a c t e r i s t i c s  a r e  based on A I ' S  

development nuclear system (designated S8DS) as def ined i n  References 1 and 4. 
The r e a c t o r  and s h i e l d  configurat ion a r e  shown i n  Figure 5. For improved systems 

EGS-4, -5 and -6, t h e  r eac to r  proper t ies  used are f o r  an "advanced" r e a c t o r  

concept a s  defined i n  Table 5 which r e f l e c t s  recent  design s tud ie s  by Atomics 

In t e rna t iona l .  

design. data  appl icable  t o  both the  development r e a c t o r  and t h e  advanced r e a c t o r  

are based on Reference 4 which i l l u s t r a t e s  t h e  v a r i a t i o n  i n  s h i e l d  th ickness  and 

w e i g h t  a s  a funct ion of payload diameter, s epa ra t ion  d is tance  and r e a c t o r  power. 

For t he  base l ine  system EGS-0 and f o r  improved systems 

I n  each case the  design r e a c t o r  thermal power i s  600 kw. Sh ie ld  

C.  RADIATOR 

1. Configuration 

a .  Shape 

The configurat ion adopted f o r  t h i s  s tudy i s  a cone 

frustrum based on a 53.4-inch r e a c t o r  s h i e l d  base diameter,  a 260-inch veh ic l e  

base diameter,  and a separa t ion  d is tance  of 50 ft between t h e  r e a c t o r  s h i e l d  

and t h e  base.  

f o r  a t r a n s i t i o n  between the  r eac to r  s h i e l d  and t h e  r a d i a t o r s ,  t he  HRL and L/C 

r ad ia to r s  are arranged on the  sur face  of t h i s  cone, extending downward from the  

55.5 -inch diameter plane.  

This cone frustrum has a 9.75' ha l f -angle .  Making due allowance 

b.  Relat ive Location of HRL and L/C Radiators 

For t he  purposes of t h i s  s tudy,  t h e  HRL r a d i a t o r  w a s  

placed neares t  the r e a c t o r  and t h e  L/C r a d i a t o r  was  placed immediately below 

1 4  



I 
8 
8 
u 
I 
8 
1 
8 
8 
I 
8 
I 
8 
8 
II 
I 
8 
1 
8 

I11 Fundamental Data Applicable t o  a l l  Systems Studied, C (cont .  ) Report No. 3386 

t h e  HRL r a d i a t o r  nearer  t he  base of t h e  cone (see Figure 6) .  
o r i e n t a t i o n  provides an order ly  t r a n s i t i o n  from high t o  low temperature a s  

follows: t he  1100 t o  1300°F reactor  c i r c u i t  is  near  t h e  apex of t h e  cone; 

t h e  490 t o  6 6 0 ' ~  HRL r a d i a t o r  i s  immediately below the  r eac to r  s h i e l d  

surrGunding the  PCS; and the  210 t o  243OF L/C r a d i a t o r  i s  near  t h e  base of t h e  

cone. Such an  arrangement i s  des i rab le  f o r  e a r t h  o rb i t i ng  app l i ca t ions  where a 

manned or unmanned payload compartment may very l i k e l y  ad jo in  t h e  base of t h e  

L/C r a d i a t o r .  

moon o r  on a p lane t  a d i f f e r e n t  arrangement could be advantageous. 

This r e l a t i v e  

It a l s o  i s  recognized t h a t  f o r  gound based operat ion on t h e  

C .  Tube Pa t te rns  

For the purposes of  t h i s  s tudy,  simple tube pa t t e rns  

were s e l e c t e d  wherein circumferent ia l  i n l e t  and e x i t  manifolds a r e  connected 

by a para l le l - f low arrangement of tubes on t h e  elements of t h e  cone. Figure 

7A i l l Q - s t r a t e s  t he  development of the HRL r a d i a t o r  tube pa t t e rn .  

improve the  c h a r a c t e r i s t i c a l l y  poor f i l m  c o e f f i c i e n t  of t he  L/C f l u i d ,  a s l i g h t l y  

d i f f e r e n t  tube p a t t e r n  development was considered f o r  the  L/C r a d i a t o r  (Figure 

p). 
fs t o  increase  the  flow r a t e  pe r  tube thereby increas ing  the  Reynolds number 

and f i l m  coe f f i c i en t .  

In  order  t o  

The e f f e c t  of t h i s  arrangement, using mult iple  passes f o r  each flow pa th ,  

d. Manifolds 

Each manifold cons i s t s  of an entrance tube which c a r r i e s  

t he  f low i n t o  a T-section where the f l o w  s p l i t s  and passes i n  opposite d i r ec t ions  

around t h e  tapered circumferent ia l  manifold r ing .  

p ressure  drop for a l l  flow paths  through t he  r a d i a t o r ,  it i s  necessary t o  

s t agge r  the  loca t ion  of the  rad ia tor  i n l e t  and output i n  the  manner i l l u s t r a t e d  

i n  Figure 7A0  
s l i g h t l y  g r e a t e r  tube diameter f o r  t h e  manifold a t  t h e  l a r g e  end of t h e  

r a d i a t o r  s ince  g r e a t e r  d i s tances  a r e  t raversed  a t  t h e  l a rge  end. Each of 

t h e  manifold segments tapers  t o  one-half of t h e  diameter a t  t h e  T-section. 

I n  order  t o  prese.rve equal  

Equal pressure drop i s  achieved i n  both manifolds using a 

e. Direct ion of  Flow 

For t h e  purpose of t h i s  s tudy,  r a d i a t o r  flow entered  

through the  manifold a t  t he  small end of the  r a d i a t o r  and e x i t e d  through t h e  

15 
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8 
manifold a t  the  l a r g e  end of t he  r a d i a t o r .  The m e r i t s  of revers ing  t h i s  procedure 

n - -  - dT -- 
dy Q C  

PL 

were not invest igated.  

f .  Bumper-Fin Configuration 

The bumper-fin configurat ion adopted f o r  t h i s  s tudy  i s  

shown i n  Figure 8. 
permits reduction of armor on the  back and s ides  of t h e  tube t o  one-quarter 

of t he  nominal a m o r  thickness .  

H a  and L/C rad ia tors .  

Use of t h e  thermal r a d i a t i o n  f i n  as a meteoroid bumper 

This tube- f in  conf igura t ion  w a s  used f o r  both 

g. Micrometeoroid Armor Criteria 

The micrometeoroid armor c r i t e r i a  a r e  based on da ta  

furn ished  by NASA, LeRC which update the  c r i t e r i a  s e t  f o r t h  i n  Reference 5. 
The updated c r i t e r i a  a r e  presented i n  Appendix A. 

f o r  both r ad ia to r s  of 0.9 f o r  10,000 hours w a s  used. 

of vulnerable  area was assigned t o  the  PCS components wi th in  the  r ad ia to r .  

The vulnerable  a rea  of t h e  r ad ia to r s  was assumed t o  be equal  t o  t h e  p ro jec t ed  

a rea  of t he  tubes and manifolds, mu l t ip l i ed  by n/2. 

A p robab i l i t y  of s u r v i v a l  

One-hundred square f e e t  

2. Radiator Model 

The model used f o r  r a d i a t o r  ana lys i s  i s  based on t h e  tube-  

f i n  configurat ion and parameters shown i n  Figure 8.  
s i d e  of t he  r ad ia to r  tube (away from the  r a d i a t o r  f i n )  t o  be a convection- 

hea ted  f i n ,  leads t o  the  following expression f o r  hea t  t r a n s f e r  between 

T and T2: 

Considering t h e  back 

Y 
I- 1 

I a t 
+ 1 

fi KF 5'(F ta tanh 6 X d  - (a + t a l  
n - Ud + 
2 2 

- 

I T - T2 I 
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The heat  t r a n s f e r  from T2 ( i d e n t i f i e d  i n  Figure 8) t o  t h e  space environment i s  

determined by 

where S a ,  f i n  e f fec t iveness ,  i s  given i n  Figure 9 and t h e  parameter d e f i n i t i o n s  

a r e  i d e n t i f i e d  i n  t h e  nomenclature list a t  t h e  f r o n t  of t h i s  r e p o r t .  Radiator 

designs f o r  t h e  study were obtained by simultaneous i n t e g r a t i o n  of these  two 

equations by an IBM 7094 computer program. 

An environmental thermal r a d i a t i o n  absorpt ion of 0.67 Btu/hr 

s q  i n .  w a s  used f o r  a l l  but  one of  the HRZ; r a d i a t o r  ca l cu la t ions .  This value 

corresponds t o  an abso rp t iv i ty  of 0.4, a n  emiss iv i ty  of 0.9, and a 300-mile 

o r b i t  a l t i t u d e .  The remaining HRL r ad ia to r  ca lcu la t ion ,  using a value of 

0 395 Btu/hr sq in . ,  represents  a synchronous o r b i t .  Representative HRL 

r a d i a t o r  c h a r a c t e r i s t i c s  were calculated over a heat  r e j e c t i o n  range of 200 

t o  500 kwt. Lubricant-coolant r ad ia to r  heat  r e j e c t i o n  r a t e s  covered the  range 

from 14 t o  21 kwt. A l l  r a d i a t o r  ca lcu la t ions  were f o r  a cone half-angle  of 

9.75O. 

3. Radiator Options; Weight vs k e a  

a. HRL Bumper-Tube-Fin 

The HRL r ad ia to r  r e s u l t s  presented i n  Figure 10 revea l  

t h a t  t h e  designer has considerable freedom, depending on t h e  number of tubes 

se lec ted ,  t o  achieve e i t h e r  low rad ia to r  weight or low radiator a rea  - but not 

both.  There is  c l e a r l y  no optimum rad ia to r  design i n  t h e  context of t h i s  s tudy 

s ince  f o r  some appl ica t ions  weight i s  more dear  than a rea  while i n  o ther  a p p l i -  

ca t ions  t h e  reverse  i s  t r u e .  Once the  number of tubes has been se lec ted ,  t h e r e  

i s  a f i n  thickness  which gives  t h e  l o w e s t  poss ib le  combination of weight and 

area. This most favorable correspondence of tube number and f i n  th ickness  

has been i d e n t i f i e d  and a l l  of t h e  r e s u l t s  of Figure 10 a r e  optimum i n  t h i s  

regard.  

Radiator pressure drop increases  as t h e  number of tubes,  

and hence p a r a l l e l  flow paths,  is reduced. Consequently, f o r  any tube diameter 

s e l e c t i o n  the re  i s  a point  where fu r the r  reduct ion i n  t h e  number of tubes causes 
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an objectionably l a r g e  pressure l o s s .  

increased a r e a  for decreased weight can be exercised only i f  tube diameter 

i s  increased. Conversely, as a l a r g e r  number of tubes i s  se l ec t ed  i n  an  

e f f o r t  t o  reduce r a d i a t o r  a r ea ,  a t  t h e  expense of increased weight, t he  

designer has t h e  option of reducing tube diameter. 

t h e  point  where, with a tube diameter of 0.25 i n . ,  f u r t h e r  reductions increase 

t h e  p o s s i b i l i t y  of f a b r i c a t i o n  d i f f i c u l t i e s .  

pressure drop of 20 t o  30 p s i ,  t h e  0.25 i n .  tube diameter i s  gene ra l ly  accept-  

a b l e .  

desired,  an  increased tube diameter i s  necessary. 

A t  t h i s  po in t ,  t h e  option of t r a d i n g  

However, one soon reaches 

With an allowable HRL r a d i a t o r  

I f  r ad ia to r  weights corresponding t o  higher  pressure loss values  are 

The r a d i a t o r  map of Figure 10 reveals t h a t  such param- 

eters 

Actually, t h e  designer has t h e  choice of a range of values  f o r  any heat  re- 

j e c t i o n  value.  Representative ranges of t hese  parameters f o r  t h e  systems 

s tudied a re  tabulated below. Values correspond t o  t h e  v a r i a t i o n  obtained by 

varying t h e  tube number i n  t h e  range between 50 and 200. 

System Heat Rejection (kw) sq ft /kw (Range) lb/kw (Range) 

as sq ft/kw and lb/kw a r e  not d i s c r e t e  values as  sometimes l i s t e d .  

HIiL Radiator 

EGS-0 43 9 2.3 - 3.0 3.7 - 1.5 
EGS-1 392 2.3 - 2.9 3.7 - 1.5 
EGS-2 352 2 .3  - 2.9 3.7 - 1-5 
EGS-3 506 2.3 - 3.0 3.7 - 1.5 
EGS-4 322 2.3 - 2.9 3 - 7  - 1.5 
ES-5 304 2.3 - 2.9 3.7 - 1-5 
EGS-6 499 2.3 - 3.0 3.7 - 1 . 5  

b.  HRL Vapor-Chamber Fin 

A comparative evaluat ion of t h e  vapor-chamber f i n  

r a d i a t o r  concept appl ied t o  a nonredundant, nonmanrated SNAP-8 EGS w a s  made 

as p a r t  of t h i s  study. The vapor-chamber f i n  concept has received some 

a t t e n t i o n  r ecen t ly  as a way of increasing r a d i a t o r  e f f ec t iveness  over t h a t  

of t h e  t y p i c a l  tube-and-fin r a d i a t o r  concept. 
design data were furnished by N A S A - k R C .  

All vapor-chamber f i n  r a d i a t o r  
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The vapor-chamber f i n  concept proposes t o  reduce r a d i a t o r  

area and weight by providing an e s s e n t i a l l y  isothermal f i n  between t h e  f l u i d -  

carrying tubes.  

r ad ia to r ,  which t r a n s f e r s  heat  by conduction, with a double-wall f i n  which forms 

a hollow chamber. Inside t h i s  chamber i s  a heat t ranspor t  f l u i d .  This f l u i d  

i s  boi led  of f  t h e  outer  tube surface and condensed on the  f i n  sur face .  This 

r e s u l t s  i n  a r ad ia t ing  f i n  of constant temperature and, consequently, high 

e f fec t iveness .  

It does t h i s  by replacing the  s ing le  s o l i d  f i n  of a conventional 

Condensate i s  re turned t o  the  bo i l ing  sur face  by means 

of c a p i l l a r y  pumping which i s  e s sen t i a l ly  in sens i t i ve  t o  g rav i ty .  

of t he  b a s i c  vapor-chamber f i n  geometry used i n  t h i s  study i s  shown i n  Figure 

11. I n  a space system l i k e  SNAP-8, where meteoroid i m p a c t  must be considered, 

t h e  vapor chamber can be compartmented i n t o  a la rge  number of sea led  segments, 

minimizing the  e f f e c t s  of meteoroid puncture. 

A sketch 

The weight and area of t he  vapor-chamber f i n  r a d i a t o r  

were compared t o  those of t he  bumper-tube f i n  r a d i a t o r  a t  condi t ions representa-  

t ive  of t h e  SNAP-8 HRL. Data f o r  the vapor-chamber f i n  r ad ia to r ,  furnished by 

NASA-kR.C ,  a r e  reproduced i n  Table 6. 
r a d i a t o r s  i s  compared i n  Figure 12; weight i s  p lo t t ed  aga ins t  area. 

ind ica t e  t h a t  each configuration has i t s  region of supe r io r i ty .  

what smaller area i s  available when the  vapor-chamber f i n  i s  used, t h i s  supe r io r i ty  

i s  accompanied by r e l a t i v e l y  heavy rad ia tor  weight. 

has a d e f i n i t e  weight advantage for r ad ia to r s  somewhat l a r g e r  i n  a rea .  

purpose of t h i s  study, the  bumper-fin configurat ion has been r e t a ined .  The 

comparison shows, however, t h a t  t h e  vapor-chamber f i n  configurat ion does have 

advantages t h a t  should be kept i n  mind f o r  c e r t a i n  appl ica t ions  where minimum 

area i s  of utmost importance. 

The performance of t h e  two types of 

The curves 

While a some- 

The bumper-fin configurat ion 

For t h e  

c .  L/C Bum-per-Fin Radiator 

The high v i scos i ty  of t h e  L/C f l u i d  makes effective heat 

t r a n s f e r  d i f f i c u l t .  I n  order t o  avoid excess r ad ia to r  area and weight, s p e c i a l  

a t t e n t i o n  must be given t o  flow ve loc i ty  within t h e  tube.  

flow v e l o c i t y  i s  t o  decrease tube diameter. 

tube diameter (OD)  of 0.1875 i n .  was se l ec t ed  f o r  t he  r a d i a t o r  maps of Figures l 3 A  

One way of increasing 

It w a s  with t h i s  i n  mind t h a t  a 

19 
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and l 3 B .  
p a r a l l e l  flow paths by placing some tubes i n  s e r i e s  (mul t ip le  pas s ) .  

r a d i a t o r  map of Figure l 3 B  shows t h e  performance improvement obtained by 

l e t t i n g  each flow path  contain two r a d i a t o r  tubes i n  s e r i e s  (two pass ) .  

7A shows an  arrangement with t h r e e  passes i n  each flow path.  

arrangement t r i p l e s  t h e  flow r a t e  per  tube,  it c r e a t e s  a not iceable  increase  

i n  pressure drop. As a r e s u l t ,  t h e  da ta  shown i n  Figure l 3 B ,  represent ing  an 

arrangement w i t h  t w o  passes  per  flow path, have been used i n  t h i s  s tudy.  

A second way of increas ing  flow v e l o c i t y  i s  t o  reduce t h e  number of 

The 

figure 

Although t h i s  

Representative two-pass parameter value ranges,obtained 

by varying t h e  tube number between 60 and 240, are t abu la t ed  below. 

System Heat Rejection (kw) sq ft /kw (Rmge) lb/kw (Range) 
L/C Radiator 

ES-0 

EGS-1 

a s - 2  

E S - 3  

as-4 
as-5 
as-5 

2102 

21"2 

1.3 -9 
17.4 
12 .2  

12 .1  

15 .O 

16.4 - 19.8 18.8 - 9.5 
16.4 - 19.8 18.8 - 9.5 
16.4 - 19.4 22.4 - 10.9 
16.4 - 20.1 20.8 - 10.1 
16.4 - 19.4 22.4 - 10.7 

16.4 - 19.4 22.4 - 10.9 
16.4 - 20.1 20.8 - 10.1 

4 Performance Po ten t i a l  Program Radiator Summary 

Tables 7 through 10 summarize t h e  dimensions and weight break- 

downs of t h e  HRL and L/C r a d i a t o r s .  

The summarized HRL values  a r e  based on a 125-tube r a d i a t o r  

design with an  0.03O-in. f i n  th ickness .  A s  mentioned e a r l i e r ,  i n  t h e  absence 

of a s p e c i f i c  appl ica t ion ,  t he re  i s  no optimum r a d i a t o r  design. The r a d i a t o r  

weights i n  t h e  summary t a b l e s  can be decreased by using fewer tubes,  but t h i s  

increases  radiat ,or  a r ea .  Conversely, t he  r a d i a t o r  area can be reduced by add- 

ing  tubes,  but  t h i s  increases  r a d i a t o r  weight. 

i s  an a r b i t r a r y  one which gives  a reasonably r ep resen ta t ive  r a d i a t o r .  

freedom t o  exchange a r e a  f o r  weight, and v i c e  versa ,  ( i l l u s t r a t e d  i n  Figure 10) 

should always be kept i n  mind, however. 

The 120-tube design s e l e c t i o n  

The 

I n  viewing Tables 7 and 8, i t  should be observed t h a t  ES-0  
0 through -3 a r e  based on a NaK temperature drop of 172 F while EGS-4 through -6 

a r e  based on a temperature drop of 150°F. 
20 
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Similarly,  t h e  summarized L/C r a d i a t o r  values  i n  Tables 9 
and 10 a r e  based on a 120-tube design with an O.03O-in. f i n  thickness  and two 

passes per flow path.  This a l s o  i s  an a r b i t r a r y  but  representa t ive  s e l e c t i o n .  

D. STRUCTURAL CONCEPTS 

In  t h e  absence of an establ ished f l i g h t - s t r u c t u r e  design f o r  t h e  

SNAP-8 FCS some judgments were necessary t o  e s t a b l i s h  a reasonable basis f o r  

s t r u c t u r a l  concepts and weights. Therefore, evaluat ion of s t r u c t u r a l  concepts 

w a s  performed during t h i s  study; however, a de t a i l ed  s t r u c t u r a l  design or 

prec ise  weight determination i s  beyond the  scope of t h i s  study. For t he  base- 

l i n e  system EGS-0, s t r u c t u r a l  weight was based on previous SNAP-8 s t r u c t u r a l  

s tud ies .  

The s t r u c t u r a l  concepts used i n  es t imat ing t h e  s t r u c t u r a l  weights 

given i n  t h i s  r epor t  are s t rongly influenced by the  general  arrangement d i s -  

cussed i n  Section I I 1 , A .  

concept used a r i g i d  t russ - type  frame capable of supporting a l l  of t he  PCS 

components and the  nuclear  system. This design concept does not provide any 

support t o  t h e  r a d i a t o r  nor assume any support from it. A f t e r  some estimates 

were made regarding t h e  s t r u c t u r a l  s t rength of t he  conica l  r ad ia to r ,  add i t iona l  

s t i f f e n i n g  of t h e  r a d i a t o r  s t ruc tu re  w a s  provided by means of longi tudina l  

ha l f - sec t ions  and circumferent ia l  "Z" r i ngs  below t h e  base of t he  frame, extend- 

ing  down t h e  conica l  envelope t o  the  base of t h e  r a d i a t o r  assembly. It w a s  

ca lcu la ted  t h a t  t h i s  combined s t ruc ture ,  comprised of the  r ad ia to r  with t h e  

added s t i f f e n e r s  and t h e  r i g i d  frame supporting t h e  PCS and the  nuclear system, 

i s  capable of withstanding the  launch acce le ra t ion  loads i n  conformance t o  t h e  

SNAP-8 environmental spec i f i ca t ion  (Reference 6 ) .  

When t h e  study w a s  i n i t i a t e d ,  t h e  SNAP-8 s t r u c t u r a l  

For t h e  improved systems, s t a r t i n g  with GS-1, a l t e r n a t e  s t r u c t u r a l  

concepts were examined i n  order  t o  develop a concept t h a t  w a s  somewhat c lose r  t o  

optimum. Preliminary ca lcu la t ions  indicated t h a t  the  tube-in-f in  r a d i a t o r  

design i n  t h e  conica l  configuration was, i n  i t s e l f ,  an e f f i c i e n t  s t ruc tu re .  By 

t h e  use of r e l a t i v e l y  l ightweight s t i f f e n e r s ,  it w a s  poss ib le  t o  use t h i s  

s t r u c t u r e  t o  support not only i t s e l f  but t h e  PCS and the  nuclear  system as 

W e l l .  

l i g h t e r  s t r u c t u r e  than would be possible  using a r i g i d  frame. 

The add i t ion  of r ings  and s t r inge r s  t o  t h i s  component r e s u l t s  i n  a much 

Calculations 
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have shown t h a t  t h e  r ings  and s t r i n g e r s  i l l u s t r a t e d  i n  Figure 14 a r e  satis- 

fac tory .  No attempt w a s  made t o  optimize these  re inforc ing  elements. 

Using t h e  s t i f f ened  r a d i a t o r  as t h e  primary s t r u c t u r a l  member, 

t h e  concept shown i n  Figure 15 w a s  developed. In  t h i s  design the  nuclear  

system, which i s  a compact r i g i d  assembly, i s  d i r e c t l y  supported by t h e  

r a d i a t o r  through a mounting r i n g  a t tach ing  t h e  base of t h e  s h i e l d  t o  t h e  t o p  

of  t he  r a d i a t o r .  The PCS components, supported by t h e  r a d i a t o r  through tens ion  

members, a r e  packaged as sub-assemblies t o  provide f o r  a r e l a t i v e l y  small 

number of f o c a l  points  f o r  supports.  I n  order t o  reduce t h e  number of tens ion  

members required,  t h e  PCS components have been grouped i n t o  four  assemblies:  

(1) PNL €MA, expansion reservoi r ,  and PLR when used i n  PNL; (2)  tu rb ine ,  

a l t e rna to r , ,  and condenser assembly; ( 3 )  bo i l e r ;  and ( 4 )  MPMA, HRL NaK PMA, 

L/C PMA and mercury i n j e c t i o n  system (MIS). 
cables  or  rods; the following discussion uses t h e  t e r m  cable f o r  convenience. 

Tension members might be e i t h e r  

The primary loop NaK PMA and assoc ia ted  components are f ixed  

d i r e c t l y  t o  t h e  nuclear sh i e ld  assembly. 

( T U )  i s  em-rently designed s o  t h a t  t h e  a x i s  o f  i t s  t runnion mountings passes 

through i t s  center of masso This f ea tu re  has been preserved i n  t h i s  study. 

Four cables  are at tached t o  each s ide  of t h e  tu rb ine  mounting. 

t he  e igh t  cables  supporting t h e  T U  a t  i t s  center  of mass extend t o  the  

r a d i a t o r  where they are fastened s o  as t o  d i f fuse  t h e i r  loads through t h e  

r a d i a t o r  sk in  and s t r i n g e r s .  Cable o r i en ta t ion  i s  t o  be se l ec t ed  s o  as t o  

hold t h e  TAA against  a l l  an t i c ipa t ed  loading. 

or a t  any instantaneous t i m e  during launch, o r b i t ,  o r  s t a r tup ,  they  provide 

pos i t i ve ,  f i xed  support. 

during maximum f l i g h t  acce le ra t ion  condi t ions e 

diameter cables  would be more than adequate t o  carry t h e  load. 

supported a t  two polnts  with t h e  cables  s o  arranged and preloaded as t o  account 

f o r  t he  spr ing r a t e  of t h e  b o i l e r  he l ix .  The mercury NaK, and L/C pumps and 

t h e i r  assoc ia ted  components are supported a t  t h e i r  combined mass center  i n  a 

manner comparable i n  p r inc ip l e  t o  t h a t  of t h e  TAA support .  

The tu rb ine -a l t e rna to r  assembly 

Consequently, 

During s teady-s ta te  conditions,  

The cables  are preloaded t o  keep them i n  tens ion  

It w a s  ca lcu la ted  t h a t  5/16-in. 

The b o i l e r  i s  

Exact cable or ientat ion, ,  preloading and f i n a l  s e l e c t i o n  of cable 

couplings and attachment poin ts  were not  determined i n  t h i s  study. Preliminary 
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calculations were made only to establish the feasibility of the concept. 

By using this structural design, a weight saving of 1100 lb was estimated. 

This structural concept was used for all of the improved systems, EGS-1 
through -6. 

Structural continuity between the HRL and L/C radiators is 

necessary in order to transfer the loads to the payload structure which in 

turn is supported by the payload mounting ring of the Saturn IVB stage. In 

order to establish structural weight requirements, it was necessary to con- 

sider the design of the structural joint at each of the above interfaces. 

Figure 14 shows a typical joint used in estimating the weight of the radiator 
structural supports. 

E. SYSTEM PERFORMANCE ANALYSIS 

Analysis of the SNAP-8 E S  requires iterative calculations which 
are best handled by a computer. 

SNAP-8 development program for steady-state performance analysis. 

gram, described in Reference 7, was given the code name of SCAN (System Cycle 
ANalysis). 
ing "nrt variables which describe the steady-state performance of the SNAP-8 

EGS. When n-m independent variables are assigned fixed values, and a complete 

set of values (initial guesses) are given for the unknown variables, the 

computer program uses a variation of the Newton-Rapheson method for iterating 
the variables until a power balance is achieved. 

mentioned above, the SCAN program requires the following input; piping 

characteristics, component performance characteristics, mercury thermodynamic 

properties, and selected state-points. Component characteristics are defined 
by curve-fitting actual test data wherever possible. 

computer calculates final values of the unknown variables which will match the 

variables assigned fixed values that are supplied as part of the input. In 

the process, the computer a l s o  calculates trim-orifice pressure drops for each 
loop to achieve a balance between the head rise of the pump and the pressure 

losses throughout the loop. The computer output includes a system diagram with 
all significant temperatures, pressures, flow rates and input and output power; 

A digital computer program was written for the 
This pro- 

The program incorporates a set of ?M1' functional equations contain- 

In addition to the variables 

With these inputs, the 
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ca lcu la ted  values, such as ove ra l l  e f f ic iency ,  a l t e r n a t o r  e f f ic iency ,  and 

a l t e r n a t o r  kva output. 

I n  the present study, t he  computer program w a s  modified t o  t h e  

extent  of replacing, adding, or de le t ing  equations as necessary t o  def ine t h e  

system being analyzed. The number of equations used ranged from 53 t o  56 and 

the  number of var iables  from 70 t o  '72. Typically,  t h e  systems were analyzed 

with e i t h e r  t h e  ne t  output power or  t h e  r eac to r  input  power f ixed .  

parameters t h a t  were f ixed  inputs  t o  the  computer a r e  t h e  tu rb ine  e f f ic iency ,  

the  turb ine  i n l e t  pressure,  t he  turb ine  e x i t  pressure,  and the  r eac to r  coolant 

o u t l e t  temperature. 

Other 
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I V .  BASELINE SYSTEM - EGS-0 

Charac te r i s t i c s  of the basel ine e l e c t r i c a l  generat ing system (EGS-0) were 

es tab l i shed  pr imar i ly  by the experimental da t a  on SNAP-8 PCS components t h a t  

were ava i lab le  a s  of September 1965. Where component experimental  da t a  were 

not ava i l ab le ,  the preva i l ing  de ta i led  design ca l cu la t ions  and drawings were 

used. Proper t ies  of the nuclear  system, s t ruc tu re  and r a d i a t o r s  were i d e n t i f i e d  

a s  described i n  the previous sec t ion .  On the b a s i s  of t h i s  information, a steady- 

s t a t e  performance ana lys i s  and a de ta i led  weight compilation of EGS-0 were made; 

da ta  used t o  evaluate  the  changes incorporated i n  the improved systems. 

A .  SELECTION OF OPERATING CONDITION FOR ANALYSIS 

To completely analyze the performance of the power system, i t  i s  

necessary t o  consider many d i f f e r e n t  conditions which might be encountered i n  a 

t y p i c a l  space mission; e .g . ,  var ia t ions  i n  (1) the inc ident  heat  input  t o  the 

r a d i a t o r s  (sun or shade),  (2)  the e l e c t r i c a l  load demanded by the vehicle  (100 

t o  O$), and (3) the  g rav i ty  f i e l d  (0 to  1 g or g r e a t e r ) .  I n  the present  study, 

one operat ing condi t ion only i s  o f  i n t e r e s t ,  s ince the objec t  i s  t o  compare the  

e f f e c t s  of i n t e r n a l  power system improvements. The condi t ions chosen f o r  compar- 

i son  of a l l  of the SNAP-8 systems character ized i n  the study a re  zero gravi ty ,  

100% vehicle  load, and maximum sun and e a r t h  inc ident  hea t  input  t o  the  r a d i a t o r s  

i n  a 300 n a u t i c a l  mile o r b i t .  I n  general, these are the  conditions which y i e ld  

the  lowest ava i l ab le  e l e c t r i c a l  power for a given SNAP-8 system. 

One o ther  condition which deserves spec ia l  mention i s  the  v a r i a t i o n  

i n  temperature of the NaK leaving the r e a c t o r .  This temperature i s  continuously 

measured and maintained by the reactor  c o n t r o l l e r  wi th in  the l i m i t s  of 1280 and 

1330'F. 

the EGS because it a f f e c t s  conditions i n  the b o i l e r .  Since i t  w a s  not obvious 

which temperature extreme would yield the lowest ava i lab le  output power, the 

performance of EGS-0 a t  both temperature condi t ions was analyzed. It was found 

t h a t  s l i g h t l y  lower output power (0.8 kw) was obtained when the r eac to r  o u t l e t  

temperature i s  a t  i t s  upper l i m i t  of 1330 F. Consequently, t h i s  condi t ion was 

se lec ted  as a b a s i s  f o r  comparing the performance of a l l  of the systems evalu- 

a ted  i n  t h i s  study. 

This v a r i a t i o n  i n  temperature s l i g h t l y  inf luences the performance of 

0 
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B .  PERFORMANCE AnTD WEIGET OF EGS-0 

The r e s u l t s  of the  performance ana lys i s  of EGS-0 opera t ing  a t  the 

upper temperature l i m i t  of the  r e a c t o r  coolant a r e  summarized i n  Figure 16. 
This summary performance cha r t  gives  a l l  s i g n i f i c a n t  s teady-s ta te  opera t ing  da ta  

for  the  system presented i n  a standardized format.  

s i g n i f i c a n t  tzmperatures, p ressures  and flow r a t e s  f o r  each loop a r e  i d e n t i f i e d  

on a schematic diagram. Below the diagram, desc r ip t ive  f e a t u r e s  def in ing  the 

makeup of the systsm a r e  tabula ted .  This l i s t  w i l l  he lp  t o  d i s t i n g u i s h  modifica- 

t i o n s  inzorporated i n t o  the improved systems descr ibed i n  l a t e r  s ec t ions  of t h i s  

r e p o r t .  A l s o  tabulated below the schematic diagram a r e  the o v e r a l l  performance 

parameters of the  EGS. On the l e f t  s ide  of the diagram, the a l t e r n a t o r  power 

d i s t r i b u t i o n  and t h e  thermal power ( i n  kw) d i s s ipa t ed  by the L/C r a d i a t o r  a r e  

t abu la t ed .  Or, the r i g h t  s ide of the cha r t  i s  a l i n e  diagram of system configur- 

a t i o n  showirlg a x i a l  height  of the r a d i a t o r s  appl icable  t o  the system. This cha r t  

format was xsed f o r  each of the systems analyzed t o  f a c i l i t a t e  comparison. 

A t  the top of Figure 16 

Regarding the pressure values  i d e n t i f i e d  on the schematic diagram, 

a word of explanat ior  i s  i n  order .  For the  NaK loops,  the pressures  given 

represent  the  t o t a l  loop przssur? drop. I n  EGS-0 (and i n  some of the  improved 

systems),  t hc  NaK PMA generates  a higher  pressure r ise  than the  loop r equ i r e s .  

In  t h a t  case,  the excess AP i s  d i s s ipa t ed  by a trimming o r i f i c e  loca ted  a t  the  

pump discharge p x t  not shown on the diagram. 

var ious pressures around the  loop a re  i d e n t i f i e d ,  the pressure  a t  the  pump d i s -  

Zharge i s  t h a t  produced by the  pump upstream of a flow con t ro l  valve (not  

showl?). Tn a i l  of the systems analyzed, the mercury pump discharge pressure  

i s  h igher  t h a c  tha t  r squi red  t o  meirt the  loop AP requirements.  This i s  seen 

i n  the diagram by comparing the  pressure  a t  the pump e x i t  with t h a t  a t  the 

For the mercury loop, where 

S o i l e r  iz l le t  a 

k e  overal.1 e f f i c i e n c y  of EGS-0 (Figure 16) i s  7.0% and the  ne t  

power output  i s  36.0 kwe. The r a t e d  power output of the s ~ ~ p - 8  EGS i s  35 h e .  

EGS-0 meets t h i s  requirement with a one k i lowat t  margin for performance degra- 

da t ion  over 10,000 hours of opera t ioo .  It was planned t h a t  the  system ana lys i s  
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would be normalized a t  40 kw net  power, thereby providing 5 kw f o r  performance 

degradation ( t h i s  being an  arbitrary, but generous number). 

analyzing E%S-0 t h e  system would not  produce t h e  desired 40 kwe net  output 

without exceeding one, o r  more, of  the component design l imi t a t ions .  The 

EGS-0 power output of 36.0 i s  l i m i t e d  by a mercury flow r a t e  of 12,000 lb /h r  

a t  the assumed turb ine  i n l e t  pressure and temperature and f l u i d  flow artba. 

However? i n  

The total. weight of EGS-0 i s  given i n  the performance summary of 

Figure 16 as 11,003 lb.  

the nuclear  system, t h e  rad ia tors ,  and supporting s t ruc ture .  A de t a i l ed  

t abu la t ion  of weights i s  given i n  Appendix B of t h i s  report .  

This value includes t h e  weight of a l l  PCS components, 

The performance of EGS-0 a t  the lwer temperature l i m i t  of  the  

r eac to r  cQolant is  summarized i n  Figure 17. It is seen t h a t  t he  net power 

output increases  t o  36.8 kwe Bnd t h a t  mercury flow rate and turb ine  i n l e t  

pressure increase a small amount. These changes a r e  due t o  reduction i n  

mercury pressure drop through the boiler associated w i t h  t he  change i n  b o i l e r  

NaK-side temperature l eve l s .  
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V .  BASXS FOR PERFORMANCE IMPROVEMENT 

Performance improvement i n  the context of t h i s  study i s  def ined a s  weight 

reduct ion,  r a d i a t o r  a rea  reduct ion,  ava i lab le  power increase ,  and o v e r a l l  e f f i -  

ciency increase .  

To ta l  r a d i a t o r  a rea  i s  an important f a c t o r  i n  applying any power system 

t o  a space vehic le  s ince the s i z e  of the boos te r  payload envelope may l i m i t  the 

amount of surface a rea  ava i l ab le  f o r  t h i s  purpose. Therefore,  ways of reducing 

r a d i a t o r  a rea  were inves t iga ted .  Not only increased o v e r a l l  e f f i c i e n c y  reduces 

r a d i a t o r  a r ea ,  b u t  the temperatures a t  which the energy i s  r ad ia t ed  has a d i r e c t  

z f f e c t  OG a rea .  Radiat ing temperatures a l s o  were evaluated i n  the course of 

t h i s  s tudy .  

Weight reduct ion i s  not d i r e c t l y  r e l a t e d  t o  o v e r a l l  e f f i c i e n c y  b u t  r e s u l t s  

from reduced r a d i a t o r  a rea  due t o  improved o v e r a l l  e f f i c i ency .  If the saving i n  

s t r u c t u r e  i s  not included, i t  can be s t a t ed  t h a t  a g rea t e r  weight reduct ion was 

achieved by increas ing  o v e r a l l  e f f i e i eney  than was obtained by reducing PCS com- 

ponent weights 

I n  the cases  where the r eac to r  output power i s  f i xed  a t  600 kwt, a s  i n  

EGS-3 and -6, the ne t  power output i s  d i r e c t l y  r e l a t e d  t o  the overall system 

e f f i c i ency .  I n  a l l  o the r  systems, from EGS 2 and up, the c e t  power output was 

f ixed  a t  40 kwe. 

r e i a t e d  t o  the o v e r a l l  system e f f i c i ency .  

The r eac to r  power required f o r  these systems i s  inverse ly  

A.  IMPROVEMENT I N  OVERALL EF'FICIEMCY 

In  order  t o  i d e n t i f y  what kinds of modif icat ions o f f e r  the g r e a t e s t  

ga in  i n  e f f i c i ency ,  an assessment of the power d i s t r i b u t i o n  throughout the 

SNAP-8 system was madep By examining the power l o s s e s  occurr ing i n  the seve ra l  

loops and components of EGS 0, i t  i s  possible  t o  develop a l o g i c a l  plan f o r  i m -  

proving e f f i c i e n c y .  Figure 18 depic t s  the d i s t r i b u t i o n  of power i n  EGS-0 a s  i t  

i s  b e i s g  transformed from thermal t o  e l e c t r i c a l  power by the b o i l e r ,  tu rb ine ,  

and a l t e r n a t o r .  Overal l  e f f i c i ency  i s  the r a t i o  of the ne t  e l e c t r i c a l  output 
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36 .o 
5 12 

t o  r eac to r  thermal input  (- = 7.0) . The o v e r a l l  e f f i c i e n c y  can be defined 

3s >io = T~ ~~y~ 72p, where -&I i s  the Rankine cycle e f f i c i e n c y  and i s  equa l  t o  

the r a t i o  of the energy ava i l ab le  t o  the turbine divided by the  t o t a l  thermal 

energy i n  the f l u i d .  

c 

- .235. q t  equals  the t o t a l  t u r -  I n  Figure 16,TC = - - 120 
5 10 

64.9 bine e f f i c i ency  equal  t o  7 = - = .5~1). Ta equals a l t e r n a t o r  e f f i c i e n c y  t 120 
equals  p a r a s i t i c  e f f i c i e n c y  defined as the n e t  e l e c -  

t r i c a l  outpilt divided by the gross e l e c t r i c a l  output of the a l t e r n a t o r  

[y = 36.0 = .645) . It i s  l o g i c a l  t o  s t a r t  f i r s t  on 0.235 (7 ) s ince  t h i s  i s  P 55.8 C 

the lowest value. This value,  however, i s  the most d i f f i c u l t  t o  increase 

s i n c e ,  f o r  t h i s  study, the r e a c t o r  o u t l e t  temperature must remain constant 

due t o  the c h a r a c t e r i s t i c s  of the r e a c t o r  f u e l  elements. The only way t o  in-  

crease t h i s  value i s  t o  increase the pressure r a t i o ;  r e f e r  t o  Sect ion V , D  f o r  

a more de t a i l e d  discussion.  

The next e f f i c i e n c y  value i s  0.541 (2t) which i s  the turbine 

e f f i c i e r c y .  This -Jalue i s  determined by the turbine pressure r a t i o ,  number of 

s t s g e s ,  blade ve loc i ty  t o  nozzle v e l o c i t y  r a t i o ,  and the s i z e  and shapes of the 

flow psssages ( s e e  Section v , c , ~ ) .  

The a l t e r n a t o r  e f f i c i e n c y  of 0.860 (?,) i s  determined by the 

a l t e r n a t o r  design and the a l t e rna to r - load  power f a c t o r .  Power f a c t o r  and a l t e r -  

ga to r  des ign  are discussed i n  Section V , C  4. 

The p a r a s i t i c  load determined the value of 17 = 0.645. This 
P 

value can be increased by reducing pump power required,  increasing the e f f i -  

ciency of the e l e c t r i c a l  con t ro l s ,  and inc reas ing  the e f f i c i e n c y  of the pump 

and motors used i n  the system. 

In t h i s  study, a l l  fou r  e f f i c i e n c i e s  which def ine the over- 

a l l  system e f f i c i ency  were improved. This increased o v e r a l l  e f f i c i e n c y  re- 

sults i n  several  improvements; reduced r a d i a t o r  a r e a ,  reduced weight ,  increased 

power output,  and reduced power input  f o r  a spec i f i ed  output .  
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B . WEIGHT FEDUCTION 

Pa r t  of the e f f o r t  directed toward the eva lua t ion  of EGS-1 consis ted 

of a weight reduct ion study of PCS components. Each component of the PCS was 

c r i t i c a l l y  reviewed by examining d e t a i l  drawings t o  i d e n t i f y  p a r t s  which could 

be l igh tened  without a f f e c t i n g  component func t ion  or r e l i a b i l i t y .  Much of the 

weight reduct ion  was e f f ec t ed  by replacing heavy bol ted  f langes with welded 

pipe connections. In  some cases,  component housings were thinned bu t  only 

where i t  was determined t h a t  s t r e s ses  were f a r  below allowable l e v e l s  Table 

1.1 summarizes the amount and nature of the weight reduct ions estimated f o r  the 

major components. The rev ised  weights shown i n  Table 11 were used i n  compiling 

the de t a i l ed  weight t a b l e s  f o r  EGS-1 presented i n  Appendix B. 

-xed  as  a b a s i s  f o r  the weight breakdown of the l a t e r  systems, a f t e r  making 

adjustments t o  account f o r  subsequent component modif icat ions.  

They a l s o  were 

Referr ing t o  Table 11, a reduct ion of 1545 l b  i n  PCS dry weight 

may be noted. Of t h i s  t o t a l ,  the l a r g e s t  s ing le  increment i s  1100 lb a t t r i b -  

u t ab le  t o  a major change i n  the s t r u c t u r a l  design concept. The remaining 

445-1b reduct ion f o r  a l l  of the other PCS components amounts t o  about 12% of 

the o r i g i n a l  weight of the PCS l e s s  the structure.. This i s  a r e l a t i v e l y  small  

r d u c t i o n ,  r e f l e c t i n g  the r a t h e r  cautious approach of the weight study. Some 

a d d i t i o n a l  weight savings may be observed by comparing the de t a i l ed  weight 

t ab le s  for EGS-3 and EGS-1 i n  Appendix B. 

reduced 57 lb a s  a by-product of the b o i l e r  weight ana lys i s  described i n  

Refereme 8; a reduction i n  rad ia tor  weight of 88 lb i s  due t o  a reduct ion i n  

hea t  r e j e c t e d .  

amounting t o  over 600 It3 i n  EGS-5. 

The primary loop NaK inventory i s  

This e f f e c t  becomes increas ingly  important i n  the  l a t e r  systems, 

C . COMF'OYENT MODIFICATIONS AIXD SUBSTITUTIONS 

The p r inc ipa l  technique employed t o  eva lua te  the performance improve- 

ment p o t e n t i a l  of the SNAP-8 EGS was tha t  of examining the performance of ind i -  

v idua l  components. De- 

s ign  modif icat ions (o r ,  i n  some cases, e n t i r e l y  d i f f e r e n t  designs)  which might 

increase  e f f i c i ency  or decrease p a r a s i t i c  l o s ses  were analyzed t o  es t imate  ind i -  

v idua l  performance ga in .  Modified ox subs t i t u t ed  components were then incorpor- 

a ted  a n a l y t i c a l l y  i n  one or more of the systems t o  determine t h e i r  e f f e c t  on 

EGS performance. 

Each of the major components of the PCS was reviewed. 

Some of the component modifications were el iminated a f t e r  
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ana lys i s  indicated t h a t  gains  were too small  or development e f f o r t  was too g r e a t  

t o  j u s t i f y  fu r the r  considerat ion.  The following paragraphs d iscuss  the na ture  

and e f f e c t  of the modifications and t h e i r  app l i ca t ion  i n  the var ious improved 

sys tems 

1. Turbine 

The turbine was reviewed toevaluate  the e f f e c t  of design improve- 

ments or: the turbine aerodynamic e f f i c i e n c y .  

four -s tage ,  a x i a l  flow, impulse-type turbine designed t o  operate  a t  12,000 rpm. 

Labyrinth sea l s  a r e  used t o  minimize i n t e r s t a g e  leakage. A t h r u s t  balance p i s -  

ton on the  f i r s t - s t a g e  r o t o r  i s  used t o  n e u t r a l i z e  axial  t h r u s t  so t h a t  bear ing  

loads a r e  reduced, thereby increas ing  bear ing  l i f e .  Mercury vapor flowing p a s t  

the  thrust-balance p i s ton  i s  verrted d i r e c t l y  t o  the exhaust.  On the  b a s i s  of 

t e s t  da t a ,  the aerodynamic e f f i c i e n c y  of t h i s  design was determined t o  be 57% 
when the mercury vapor contained 2$ by weight of l i q u i d  carryover .  

ciency does not include bear ing and sea l -  to-space lo s ses  which have been es tab-  

l i s h e d  a s  3 0 3  kw. 

The SNAP-8 turbine assembly i s  a 

This e f f i -  

Analysis ind ica ted  t h a t  performance can be improved by incorpor- 

a t i n g  the  following design modif icat ions:  

a .  Reduce the diameter and clearances,  and improve the 

l a b y r i n t h  and concent r ic i ty  of the t h r u s t  balancing pis ton;  provides a reduct ion  

i n  tne  bypass flow through the  p i s ton .  

b .  Reduce the present  b l ade - t ip  c learances;  can be reduced 

from the present 0.040 t o  0.020 i n .  on the b a s i s  of thermal expansion da ta .  

c .  Reduce the nozzle-vane t i p  c learances;  s u f f i c i e n t  reduc- 

t i o n  el iminates  leakage path common t o  a l l  fou r  s t ages .  

d .  Reduce t r a i l i n g  edge thickness  of r o t o r  blades;  can be 

reduced f r o m  0.014 down t o  0.006 i n .  

These changes were estimated t o  increase  aerodynamic e f f i c i e n c y  

by 7.4 percentage po in t s  t o  64.4% w i t h  2% l i q u i d  carryover (Reference 9 ) .  
value was m e d  i n  the system ana lys i s  f o r  EGS-1, -2, and -3  a 

This 

fr, EGS-5 2nd -6, t.he tlrrbine i n l e t  p ressure  was increased from 

Appendix C shows the equat ions used and the assumptions made 240 to 350 ps ia .  

i n  correctirig the s tage e f f i c i e n c i e s  t o  account f o r  higher  p a r t i a l  admission 

IC 
I 
I 



v Basis f o r  Performance Improvement, c ( con t . )  Report No. 3386 

l o s s e s  due t o  the change i n  absolute pressures  and pressure r a t i o s .  A turbine 

e f f i c i ency  of 62.5%, obtained by th i s  process ,  was used i n  EGS-5 and -6. 

A more recent  ana lys i s ,  described i n  Reference 10, i nd ica t e s  

t h a t  the attainment of an e f f i c i ency  of 62% would be more probable wi th  the 

above-l is ted modif icat ions.  

pressure of 350 ps i a ,  an e f f i c i ency  of 61% w a s  used t o  evaluate  the performance 

of t h a t  system. I n  a l l  systems, i t  was assumed t h a t  the flow passages were ad- 

jzstn,d t o  match the mercury flow ra t e s  ca lcu la ted  i n  the system performance ana lys i s .  

Therefore, i n  EGS-4, which a l s o  has a turbine i n l e t  

2. NaK Pump Motor Assemblies (NaK PMA) 

This component was reviewed t o  determine the f e a s i b i l i t y  of 

reducing i t s  required input power. This i s  an important cont r ibu tor  t o  the para- 

s i t i c  power of the EGS s ince  the same assembly i s  used i n  both the  PNL and HRL. 

The present  SNAP-8 NaK PMA i s  driven by a 5800-rpn induct ion motor; i t s  character-  

i s t i c s  a re  given i n  Figure 19. This type of NaK PMA was used i n  EGS-0, -1, and -3 
where there  i s  the requirement for r e l a t i v e l y  high-head-rise and flow c h a r a c t e r i s t i c s .  

For systems with lower flow r a t e s  and lower head-r ise  requirements, 

such as i n  EGS-2 and -4, i t  was found t h a t  the PMA could be modified i n  a simple 

way t o  reduce the power requi red ,  The modification consis ted of rewinding the 

motors t o  produce a 10-pole motor instead of the present  8-po1e motor; reduces 

the synchronous speed from 6000 t o  4800 prm. The opera t ing  speed for t h i s  de- 

s ign  would be 4800 rpm if a synchronous motor i s  used o r  4650 rpm i f  an induc- 

tfori motor i s  employed. 

Analysis of the reduced-speed NaK PMA was conducted t o  es tab-  

l i s h  the new H-Q c h a r a c t e r i s t i c  and t o  determine the power input  requirements.  

The H-Q and power input  of the 4800-rpm synchronous NaK PMA a re  given i n  Figure 

20. 

same c h a r a c t e r i s t i c s  a t  4650 rpm as given f o r  the 4800-rpm assembly. 

gain i n  pump motor e f f i c i ency  i s  obtained from the reduct ion of hydrodynamic 

l o s s e s  associated with the NaK-flooded motor r o t o r  and the reduced hydraul ic  power 

inpar ted  t o  the pumped NaK. 

It i s  assumed here t h a t  a 3% increase i n  impeller diameter w i l l  give the 

The g r e a t e s t  

Table 12 gives  a comparison of the lo s ses  and input  

power with those 

and -6 by custo:. 

of the 5800 rpm NaK PMA. 

A t h i r d  c l a s s  of N a K  PMA 

designing the assembly t o  

33 
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loop AP requirements. 

l o s s e s  and motor e l e c t r i c a l  l o s ses  t o  obta in  input  power. 

head r i s e  and input power vs NaK flow r a t e  obtained by t h i s  method. 

implies t h a t  a spec i f i c  PMA must be designed f o r  each flow r a t e .  

design requirements a re  shown i n  Table 13. 
t h i s  tab le  r e f l e c t  modifications i n  pipe s i z e  and components t o  reduce loop 

hydraul ic  impedance 

Allowances were made f o r  impel ler  e f f i c i ency ,  hydraul ic  
Figure 21 shows the 

This f i g u r e  

The s p e c i f i c  

The head r i s e  requirements given i n  

I n  addi t ion  t o  varying the head and power input  c h a r a c t e r i s t i c s  

of the NaK PMA, the method of cooling the assembly w a s  reviewed. 

the  SNAP-^ PMA's were designed t o  operate a t  600 '~ bu t  a r e  cooled by L/C f l u i s  so 

t h a t  they operate a t  325OF. 
temperatures of 600 '~  has shown tha t  500°F HRL NaK can be used a s  coolant f o r  

these assemblies. The input  power reduces s l i g h t l y  a t  the high motor temperature 

f o r  increased e l e c t r i c a l  l o s ses  due t o  higher  winding r e s i s t ance .  

of cooling these motors with HRL NaK i s  i n  a reduct ion of r a d i a t o r  a r ea .  

i s  a net red-Action of approximately 1 5  sq  f t  f o r  each kw t ransfer red  from the L/C 

r a d i a t o r  t o  the 3RL r a d i a t o r .  

through EGS-6 

The motors f o r  

Recent t e s t s  made on a NaK PMA operat ing a t  motor 

The advantage 

There 

NaK cooling of the NaK PMA's was used i n  EGS-2 

3 .  Pkrcury Pump 

The present  SNAP-8 mercury PMA c h a r a c t e r i s t i c s  have been found 

t o  be s s t i s f a z t o r y  f o r  a l l  systems considered i n  t h i s  study a s  long a s  the system 

s t a t e -po in t s  a?? such a s  t o  provide adequate suc t ion  pressure t o  the pump. 

PMA employs a l iqu id- to- l iqu id  j e t  pump t o  increase  the i n l e t  pressure t o  the cen- 

t r i f t l ga l  impel ler .  

termined by the jet-pump requirements, shown i n  Figure 22. 

e t e r s  influence the NPSEI: ava i lab le :  

r a d i a t o r  NaK A T .  

NPSH f o r  operation of the mercury PMA- 

duct ion i n  turbine e x i t  pressure w a s  des i red ,  the pump HPSH requirement could be 

reduced by r e l a t i v e l y  simple design changes. 

This 

The NPSH requirements of the mercury pump a r e ,  therefore ,  de- 

Two independent param- 

the turbine exhaust pressure,  and the HRL 

All of the systems synthesized i n  the study provide s u f f i c i e n t  

However, i f  f o r  some appl ica t ions  a r e -  

The SNAP-8 MPMA a l s o  includes a motor scavenger impeller which 

absorbs 0.65 kw s h a f t  power. 

a ted ,  thereby reducing the motor input  power by 0.7b kw (based on a motor e f f i -  

ciency of 87.8%). 

The study indica ted  t h a t  t h i s  p a r t  could be elimin- 

This modification was adopted i n  EGS-4, -5, and -60 

34 



V Basis f o r  Performance Improvement, C ( con t . )  Report No. 3386 

The mercury pump power demand could be reduced f u r t h e r  by 

mounting the mercury pump impeller on the turbine or a l t e r n a t o r  sha f t .  The 

e f f e c t  of t h i s  modification was invest igated f o r  three d i f f e r e n t  impeller loca- 

t i ons .  The impeller was located on the outboard end of the turbine,  between the 

turbine and the mercury space s e a l ,  and on the outboard end of the a l t e r n a t o r  sha f t .  

a .  Turbine Mounted Mercury Pump 

This arrangement (shown i n  Figure 23) makes i t  possible  

t o  e l imina te  the seal-to-space associated with the present MPMA. However, there 

a re  severa l  disadvantages associated with t h i s  design concept which would require  

considerable development e f f o r t  t o  overcome. The two main disadvantages a r e  the 

la rge  overhang which causes d i f f i c u l t y  i n  cont ro l l ing  running clearances due t o  

the thermal gradients  i n  the frame s t ruc tu re  and the flow of mercury vapor a t  

155 p s i a  from the f i r s t  turbine wheel cav i ty  i n t o  the pump impeller back vanes. 

The vapor flow causes an estimated temperature r i s e  t o  900°F a t  the back vanes 

which increases  corrosion and erosion r a t e s .  

b. Alternator-Mounted Mercury Pump 

This arrangement (shown i n  Figure 24) e l imina tes  the 

l o s s e s  a.ssociated with the e l e c t r i c  motor dr ive of the present MPMA. The sea l -  

to-space i s  re ta ined  i n  t h i s  design so tha t  the reduction i n  p a r a s i t i c  power i s  

not as g r e a t  a s  noted i n  the above paragraph. Because t h i s  design concept i s  

s t m i l a r  t o  the present  MPMA design, i t  i s  the e a s i e s t  t o  accomplish and, there- 

f o r e ,  represents  the recommended approach t o  mounting the pump impeller on the 

T.A-4. Table 14 compares the p a r a s i t i c  losses  associated with these modifications 

c . Mercury Pump a t  Turbine Exhaust End of Turbine Shaft  

A t h i rd  configuration was studied t o  evaluate  the f e a s i -  

b i l i t y  of i n t e g r a t i n g  the mercury pump on the turbine sha f t  between the turbine 

and the space s e a l .  The primary purpose of the study w a s  t o  evaluate  the e f f e c t ,  

i f  any, on turbine overhacg. Toward t h a t  end, the dimensional requirements of 

the mercury pump cent r i fuga l  stage and the turbine housing and s h a f t  necessary 

t o  accommodate the pump were studied. It was found t h a t  i t  i s  mechanically 

poss ib le  t o  i n s t a l l  the pump on the turbine sha f t  by increas ing  the turbine over- 

hang about one inch. To do t h i s  while maintaining a s a t i s f a c t o r y  s h a f t  c r i t i c a l  

speed, i t  i s  necessary t o  increase the sha f t  diameter by about 0 .1  inch, and to  
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s e l e c t  a l a r g e r  bearing (55 mm ins tead  of 40 mm). 

a design i s  d i f f i c u l t  t o  a s ses s .  There a r e  two u n c e r t a i n t i e s  i n  the  design: 

(1) a s h a f t  surface speed of about 90 f p s  a t  the  pump i n l e t  which w i l l  cause 

p re ro ta t ion  of the mercury en te r ing  the pump, and (2 )  hea t  conduction t o  the  

mercury space sea l .  

incorporated i n  the  systems being s tudied .  

However, the  f e a s i b i l i t y  of such 

In  view of these u n c e r t a i n t i e s ,  t h i s  design concept was not 

I n  summary, the inves t iga t ion  of mercury pumps mounted on 

the  turbine o r  a l t e r n a t o r  s h a f t  yielded the following r e s u l t s :  

(1) An appreciable  reduct ion  i n  p a r a s i t i c  power may 

Table 14 shows about 1.8 kw lower lo s ses  f o r  be r ea l i zed  by t h a t  approach. 

e i t h e r  of the  outboard pump conf igura t ions .  

the  0.74 kw r ea l i zed  by e l imina t ing  the motor scavenger a s  descr ibed i n  paragraph 

C , 3  above.) 

l o s s e s  by a s  much as 1 kw. 

(The ne t  gain i s  t h i s  value less 

The inboard arrangement of the  pump could, i n  p r i n c i p l e ,  reduce 

(2) All of the configurat ions requi re  component design 

ard development work t o  reso lve  unce r t a in t i e s  which prevent  accura te  p red ic t ion  

of performance by ana lys i s  a lone.  

( 3 )  Use of any TU-mounted mercury pump i n  SNAP-8 imposes 

severe r e s t r a i n t s  on system configurat ion and operat ion.  

fluenced by the pump suc t ion  pressure  requirements and the e f f e c t  of o r i e n t a t i o n  

of the turb ine ,  $he condenser and the pump on the ava i l ab le  suc t ion  pressure 

when opera t ing  i n  a g rav i ty  environment. 

a r e  l imi ted  by the f a c t  t h a t  the pump cannot be operated independently of the 

turbir?e. IP view of the above observat ions,  none of the TAA-mounted pump con- 

cepts  were incorporated i n  the  improved system s tud ie s .  

Configuration i s  in-  

System s t a r t u p  and shutdown opera t ions  

d .  Mercury J e t  Pump 

Mercury j e t  pumps, using sa tu ra t ed  mercury vapor a s  the 

dr ive  f l u i d ,  do not produce enough head r i s e  t o  make t h e i r  use f e a s i b l e .  

ever ,  i f  sa tura ted  l i q u i d  mercury i s  used a s  the d r ive  f l u i d ,  s u f f i c i e n t  head 

r i s e  ca.r! be a t ta ined  so t h a t  two j e t  pumps i n  s e r i e s  could operate  i n  the SNAP-8 

How- 
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Rankine-cycle loop a s  b o i l e r  feed pumps. 

with t y p i c a l  s teady-s ta te  operat ing data i n  Figure 25. 
This concept i s  shown schematically 

The saturated-l iquid dr ive  f l u i d  e n t e r s  the mixing sec t ion  

through the c e n t r a l  nozzle while t he  pumped f l u i d  e n t e r s  through an annular- 

nozzle. Condensation of the vapor i n  the dr ive f l u i d  takes place i n  the mixing 

sec t ion ,  and conservation of momentum i s  the  b a s i s  f o r  the mixing process.  The 

pmped f l u i d  must be s u f f i c i e n t l y  subcooled so t h a t  i t  can- absorb the heat  of 

condensation of the vapor present i n  the d r ive  f l u i d .  Thus, a t  the end of the 

mixing sec t ion ,  a l l  the  f l u i d  i s  i n  the l i qu id  phase. A d i f f u s e r  then converts 

most of the k i n e t i c  energy t o  pressure.  

The e f f ic iency  (mechanical work divided by thermal input  ) 

i s  low. However, a l l  of the thermal input  i s  u s e f u l  t o  the Rankine cycle s ince 

the hea t  t h a t  i s  not converted to  mechanical work i s  returned t o  the b o i l e r .  

A gain i n  System e f f i c i e n c y  i s  derived from the elimina- 

t ior ,  of the  power required t o  dr ive  the present  MPMA. This amounts t o  a poten- 

t i a l  reduct ion i n  p a r a s i t i c  power of 3.5 kw. 

The t o t a l  heat input  t o  the mercury i n  a t y p i c a l  SNAP-8 

EGS ( e .g . ,  EGS-2) with mercury PMA i s :  

- h. ) b o i l e r  - 
Qcp - ' (bout i n  

= 9765 (162.8 - 17.8) = 1.415 x 10 6 Btu/hr 

This compares with an equivalent  jet-pump system where 

the  hea t  input i s :  

= G (bout - hin) bo i l e r  + 0.5 (bout - h. ) hea te r  p i n  

6 
= 9765 (162.8 - 22.3) + 4882 (35.5 - 22.3) = 1.436 x 10 Btu/hr 

Based on the accuracy of t h i s  ana lys i s ,  there  i s  no 

e s s e n t i a l  d i f fe rence  i n  hea t  input  to  the system. 
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I n  order  t o  take advantage of t h i s  concept, i t  

3386 

would be 

necessary t o  develop mercury j e t  pumps t o  e s t a b l i s h  flow and pressure  con t ro l  

requirements and a l s o  t o  determine su i t ab le  s t a r t u p  procedures f o r  t h i s  type of 

pump. Preliminary eva lua t ion  of the e f f e c t  of decreasing the  driviRg f l u i d  

temperature by 50 F ( t h i s  change i s  equivalent  t o  the r e a c t o r  dead band) ind ica t e s  

t h a t  the dischazge pressure of the  j e t  pump would decrease by approximately 16$. 
Therefore, i t  i s  Fecessary t o  provide a c o n t r o l  device f o r  the j e t  pump t o  avoid 

power excursions due t o  normal off-design opera t ing  conditiolls  Because of 

m t i c i p a t e d  development problems, the mercury jet-pump concept was not  incor -  

porated i n  a ry  of the systems analyzed. 

0 

4. Alterna tor  

The a l t e r n a t o r  used i n  the SNAP-8 PCS i s  of the homopolar type 

The a l t e r n a t o r  was reviewed f o r  the purpose of producir,g 400 cps a t  12,000 rpm. 

determining the f e a s i b i l i t y  of weight reduct ion and poss ib l e  performance improve- 

ment by modification or replacement by another type.  

e red  was operation a t  HRL temperatures so t h a t  the  e l e c t r i c a l  l o s s e s  could be 

r e j e c t e d  by the HRL r a d i a t o r .  

increased a l t e r n a t o r  e f f i c i e n c y  and a l s o  a saving i n  weight.  

i a t o r  and modifications t h a t  were s tudied i n  t h i s  program a r e  discussed below: 

One modif icat ion consid- 

The use of an induct ion a l t e r n a t o r  may r e s u l t  i n  

The SNAP-8 a l t e r -  

a .  SNAP-8 Al te rna tor  

The o v e r a l l  e f f i c i e n c y  of the present  SNAP-8 homopolar 

a l t e r n a t o r  i s  shown i n  Figure 26. 
na tor  d i d  not provide e f f i c i e n c y  da ta  a t  power l e v e l s  of 70 t o  80 kwe a t  u n i t y  

power f a c t o r ,  the e f f i c i ency  a t  these condi t ions was est imated by using the 

fol lowing r e l a t ion :  

Since the  t e s t  da t a  ava i l ab le  for t h i s  a l t e r -  

q,. kwe 

wher*To = the  a l t e r n a t o r  e f f i c i e n c y  a t  60 kwe gross power and 0.75 power f a c t o r  

and kva is the  kva value for the  power f a c t o r  a rd  gross  Ime cmtpxt a t  :Thick the  

e f f i c i e n c y  i s  t o  be evaluated.  
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This method was used t o  es t imate  the e f f i c i ency  of the 

It should be noted t h a t  the  a l t e r n a t o r  design a l t e r n a t o r  i n  EGS-3 and -6. 
r a t i n g  of 83 kva i s  s l i g h t l y  exceeded i n  these systems. EGS-3 requires  85 kva 

c a p a b i l i t y  a t  0.92 power f a c t o r  and EGS-6 r equ i r e s  86 kva a t  a power f a c t o r  of 

1.0. 

nator  would increase s ince the ne t  power f a c t o r  decreases  i n  the leading d i rec-  

t i o n  a s  more power i s  shunted t o  the  PLR. 

amount of capac i t ive  reactance i n  the c i r c u i t  and/or adding induct ive reactance 

i n  the PLR c i r c g i t .  Re-evaluation of the allowable temperature of the ML insu la-  

t ior .  and the e f f e c t  of temperature on the l i f e  and r e l i a b i l i t y  of t h i s  i n s u l a t i o n  

may permit operat ion of t h i s  component a t  the power oJ tput  l e v e l s  of EGS-3 and -6. 
This ternperature l i m i t ,  the power f ac to r  v a r i a t i o n  with vehicle  load, and vol tage 

cont ro l  l i m i t s ,  must be evaluated i n  more d e t a i l  i n  f u t u r e  s p e c i f i c  appl ica t ion  

s tud ie  s . 

If the vehicle  load were to  drop t o  0 i n  EGS-6, the kva load on the a l t e r -  

This may be corrected by reducing the 

b .  Induction Alternator  

An evaluat ion w a s  made of a c a p a c i t o r - e x i t e d  induct ion 

generator .  This eva lua t ion  was prompted by t h e f i c t  t h a t  the lobed r o t o r  uni-  

d i r e c t i o n a l  flux pr inc ip l e  of the homopolar a l t e r n a t o r  r e s u l t s  i n  l e s s  than 50% 

u t i l i z a t i o n  of the output voltage capabi l i ty  normally achieved i n  machinery of 

t h i s  s i z e .  Since the magnetic c i r c u i t  of the induction generator would be u t i -  

I.Tzed 100% of the time, ins tead  of the 50% u t i l i z a t i o n  of the homopolar a l t e rna -  

t o r ,  a s ign i f i can t  weight reduct ion i s  poss ib le .  

Other poter- t ia l  advant,ages of the induct ion generator 

are t o  be expected i n  the  el iminat ion of the  f i e l d  c o i l  and heavy magnetic yoke 

t h a t  a r e  bas i c  t o  the homopolar a l t e rna to r ,  and the  reduced l o s s e s  from windage 

and bearings with the l i g h t e r  and smaller r o t o r .  An e l e c t r i c a l  e f f i c i ency  

approaching 95% i s  a t t a i n a b l e  as a consequence of these reduced e l e c t r i c a l  and 

mechazical l o s ses  e 

The induction a l t e r n a t o r ,  which f ea tu res  a s ingle  s t a t o r  

output winding, s u b s t i t u t e s  capacitor e x c i t a t i o n  f o r  the  vol tage regula tor -  

e x c i t e r  rlow ased.  This prel iminary concept would be an open loop regula t ion  
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system using magnetic s a tu ra t ion  of the r o t o r  i r o n  t o  s t a b i l i z e  the output 

vol tage.  

t h a t  the voltage can be held wi th in  - +3.0$ with a - +1.0$ speed va r i a t ion .  Addi- 

t i o n a l  work i s  required t o  evaluate  the problems of vol tage buildup and shor t -  

c i r c u i t  protect ion . 

For a constant power output such a s  the  SNAP-^ system, i t  appears 

For the induct ion a l t e r n a t o r  t o  func t ion  properly i n  

the SNAP-8 system, the capac i tor -exc i te r  must fu rn i sh  a leading power f a c t o r  under 

a l l  condi t ions,  o r  e l s e  the  a l t e r n a t o r  w i l l  co l lapse  e l e c t r i c a l l y .  

po in t  f o r  t h i s  evaluat ion assumes t h a t  the  worst a l t e r n a t o r  load has a 0.75 lagging 

power f a c t o r .  In  order  t o  co r rec t  t h i s  t o  a 0.75 leading power f a c t o r  and, there-  

by, provide an  ample design margin, a capac i tor  with an estimated weight of 50 l b  

would be needed t o  furn ish  the  required capac i t ive  reactance.  

"he design 

The e l e c t r i c a l  e f f i c i ency  of the induction a l t e r n a t o r  was 

estimated a t  95% with 0.75 leading  power f ac to r ;  however, the  acceptance test 

data f o r  the  homopolar a l t e r n a t o r ,  from which Figure 26 was p lo t t ed ,  shows an 

o v e r a l l  e f f ic iency  of 90.7% a t  55 kw and a u n i t y  power f a c t o r .  

value by deducting the 2.0 kw loss  f o r  bear ings and s l i n g e r s  gives  an e l e c t r i c a l  

e f f i c i ency  of 93 .a$. 

Correcting t h i s  

It w a s  assumed, i n  keeping with the replaceable  component 

concept, t ha t  the induct ion a l t e r n a t o r  would b o l t  t o  the TA a s  does the present  

a l t e r n a t o r ,  and would contain i t s  own bearings,  s l i n g e r s ,  and cool ing j a c k e t .  

Preliminary design es tab l i shed  r o t o r ,  s t a t o r ,  and end-turn dimensions f o r  both 

a four-pole 12,000 rpm and a two-pole 24,000 rpm machine. 

f o r  bear ings,  s l ingers ,  end tu rns ,  and mounting f lange  was added t o  the r o t o r  

s tack  length t o  obta in  o v e r a l l  l engths .  

1 i n .  t o  t h e  s t a t o r  diameter t o  allow f o r  s t r u c t u r e  and cooling j acke t s .  With 

volumes es tab l i shed ,  weights were estimated by rat ioFng t o  the homopolar a l t e r -  

na tor  weight and volume. 

An allowance of 10 i n .  

Diameters were determined by adding 

I n  making a weight comparison between the two machines, 

the  induction a l t e rna to r  i s  charged with the  capac i tor -exc i te r  u n i t  weighing 

50 l b .  "he dimensions and weights of the two machines a r e  compared on Figure 27. 
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From t h i s  evaluat ion,  i t  appears t h a t  the e l e c t r i c a l  e f f i -  

ciency of the two machines i s  comparable. On a weight b a s i s ,  the induction a l t e r -  

nator  i s  estimated t o  be approximately 175 l b  l i g h t e r  than the present  SNAP-8 a l t e r -  

na tor ,  o r  110 l b  l i g h t e r  than the  weight-reduced a l t e r n a t o r .  

of speed con t ro l  and e l e c t r i c a l  system problems would be needed if the induct ion 

a l t e r n a t o r  were t o  replace the present SNAP-8 a l t e r n a t o r .  

was not used i n  t@e systems synthesized i n  t h i s  study. 

Addit ional  ana lys i s  

The induct ion a l t e r n a t o r  

e .  High-Temperature Al te rna tor  

The p o s s i b i l i t y  of using a high- temperature ( 4OO0C a l t e rna -  

t o r  was evaluated a s  a means of reducing r a d i a t o r  a rea .  The high-temperature a l t e r -  

na tor  would be cooled by HRL NaK, decreasing the heat  r e j e c t e d  by the L/C r a d i a t o r .  

This inves t iga t ion  showed t h a t  the a l t e r n a t o r  e f f i c i ency  de- 

creased a s  the temperature of the winding increased due t o  increased r e s i s t i v i t y  of 

the conductors. 

The e f f e c t  of high-temperature operat ion on performance a t  

1 .0  power f a c t o r  i s  summarized i n  Table 15, showing a drop i n  a l t e r n a t o r  e f f i c i e n c y  

of approximately 2 percentage po in t s .  

power f a c t o r .  

Somewhat g rea t e r  l o s ses  r e s u l t  a t  lower 

The e f fec t  of s u b s t i t u t i n g  t h i s  high-temperature a l t e r n a t o r  

f o r  the L/C cooled a l t e r n a t o r  on system performam: w a s  analyzed. 

decreased by 0.26 percentage po in t s .  

20 sq f t  due t o  the reduced cycle e f f ic iency .  An a d d i t i o n a l 1 2  sq f t  was required 

t o  cool  the  a l t e r n a t o r  with HRL NaK so t h a t  39 sq f t  were added t o  the HRL rad ia-  

t o r  while 64.5 sq f t  were removed from the L/C r a d i a t o r .  This r e s u l t s  i n  a ne t  

reduct ion i n  t o t a l  r a d i a t o r  a rea  of 32.5 sq f t .  These numbers a re  based on the 

assumption tha t  the heat  flow t o  the L/C cooled and lub r i ca t ed  high-temperature 

a l t e r n a t o r  bearings i s  neg l ig ib l e .  

d-ice the savings i n  r a d i a t o r  a rea  obtained by using a NaK-cooled a l t e r n a t o r .  

System e f f i c i e n c y  

This causes the HRL r a d i a t o r  t o  increase by 

Any hea t  flow t o  these p a r t s  would f u r t h e r  r e -  

Because of the small  reduct ion i n  r a d i a t o r  a rea ,  the loss  

i n  e f f i c i ency ,  and the e f f o r t  required t o  develop i t ,  the high-temperature a l t e r -  

na tor  was not used i n  the systems synthesized i n  t h i s  study. 

5- 

a l t e r n a t o r  output 

Speed Control 

The SNAP-8 speed control  i s  a closed-loop system t h a t  senses the 

frequency, and controls  the speed .of the turbine by varying the 
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I 

load i n  the p a r a s i t i c  load r e s i s t o r .  The PIX load i s  cont ro l led  by means of satur- 

able r e a c t o r s .  

of 1.5 kw i s  delivered t o  the PLR when the con t ro l  i s  i n  the "off" mode of opera- 

t i o n  ( i . e . ,  a t  100s vehicle  load ) .  I n  addi t ion ,  i n t e r n a l  l o s ses  i n  the sa turab le  

r eac to r  a re  approximately 800 wat t s .  The sa turable  r eac to r  assembly weighs about 

190 l b .  

The speed i s  regulated t o  - +l$. With t h i s  system, a minimum load 

A s i l i con-cont ro l led  r e c t i f i e r  (SCR) type of speed con t ro l  was 

evaluated a s  a design a l t e r n a t i v e  with the  expectat ion of reducing the p a r a s i t i c  

load on the  a l t e r n a t o r .  The SCR system i s  capable of c u t t i n g  of f  the power t o  

the PLR t o  v i r t u a l l y  zero when i t  i s  i n  the "off" mode, e l imina t ing  the need f o r  

1.5 kw r e s i d u a l  p a r a s i t i c  load .  I n  addi t ion ,  the SCR c i r c u i t  described below has 

an i n t e r n a l  power l o s s  of only 330 wat t s .  

of 1.97 kw i s  therefore  a t t a i n a b l e  by adoption of the SCR speed cont ro l  design.  

A net r educ t ion ' i n  p a r a s i t i c  power 

A s implif ied schematic diagram of the SCR speed-control system 

i s  shown i n  Figure 28; i t s  approximate dimensions a re  given i n  Figure 29. Paral-  

l e l  SCR's and diodes are shown i n  each phase f o r  increased r e l i a b i l i t y  s ince each 

SCR and diode can ca r ry  the current  requi red .  The current-carrying capab i l i t y  i s  

a funct ion of the temperature of the SCR. Westinghouse Type 2 N  3888 SCR's and 

Ty-pe 1 N  3291 s i l i c o n - r e c t i f i e r  diodes were se lec ted  as t y p i c a l  components for t h i s  

cont ro l .  

(357OF) f o r  the SCR and diodes,  respec t ive ly ,  which allows the assembly t o  be 

The maximum allowable case temperatures a re  118OC (244'F) and 182OC 1 

I; 
cooled by the L/C f l u i d .  With an average cur ren t  of 22 amp, the l o s s  per  diode I 

and SCR i s  25 and 30 w a t t s ,  r espec t ive ly .  Consequently, the t o t a l  hea t  load 

t o  the L/C loop for the  6 diodes and 6 SCR's i s  330 wa t t s .  

The estimated weight of the SCR speed cont ro l  i s  40 l b .  An 

add i t iona l  50 l b  f o r  l o c a l  sh ie ld ing  was included i n  the  weight es t imates  f o r  

EGS-2 through -6 i n  which the SCR cont ro l  system was  used. This weight of sh ie ld-  

ing,  cons is t ing  of tungsten and l i th ium hydride,  i s  s u f f i c i e n t  t o  reduce the r ad i -  

a t i o n  dose a t  the SCR's by one order of magnitude t o  lo5 rads  gamma and lolo nvt 

neutrons.  It i s  not a t  a l l  c e r t a i n  tha t  t h i s  supplemental sh ie ld ing  i s  necessary; 

however, s ince the SCR's a re  somewhat more s e n t i t i v e  t o  r a d i a t i o n  than the diodes 

and the  o ther  e l ec t ron ic  components, the sh ie ld ing  w a s  added a s  a precaut ion.  
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The SNU-8 b o i l e r  i s  a single-pass counter-flow design i n  

which seven p a r a l l e l  tubes containing mercury a re  enclosed i n  a s ing le  tube 

containing MaK. The c h a r a c t e r i s t i c  temperature p r o f i l e  of t h i s  type of b o i l e r  

i s  such t h a t  the mercury and NaK temperatures approach the same value a t  a po in t  

where i n i t i a l  mercury bo i l ing  occurs, about 10% along the tube from the  mercury 

i n l e t  end. This loca t ion  has been referred t o  as the "pinch-point". The NaK- 

mercury temperature d i f fe rence  a t  the pinch-point (AT ) i s  an important param- 

e t e r  a f f e c t i r g  system performance. 

In  s.Libseqdent paragraphs, o ther  bo i l e r  performance c h a r a c t e r i s t i c s  and t h e i r  

trestment 111 the system s tudies  a re  described. 

P 
This i s  discussed i n  the following paragraph. 

a .  Boi ler  Pressure S t a b i l i t y  

Boi ler  pressure s t a b i l i t y ,  expressed a s  the r a t i o  of 

pressure f luc tua t ion  t o  the absolute pressure a t  the b o i l e r  mercury o u t l e t ,  i s  

shown i n  Figure 30 a s  a funct ion of AT The curves a r e  based on b o i l e r  t e s t  
P 

da ta  and show t h a t  pressure osc i l l a t ions  increase as AT decreases.  The pressure 

o s c i l l a t i o n s  occur a t  a frequency of 0.2 t o  0.5 cps, low enough t h a t  the turbine 

output power w i l l  f l uc tua t e  correspondingly a t  approximately the same amplitude 

( i n  %) 

P 

From the data on which Figure 30 i s  based, a minimum 

AT 

b a s i s ,  the b o i l e r  pressure f luc tua t ion  w i l l  not exceed - +3%. 
c r i t e r i o n  t o  the system performance calculat ions i n  the present  study, a AT of 

75'F was used because a l l  of the systems were computed f o r  the upper temperature 

l i m i t  (133OOF) of the reac tor  coolant. I f  the lower temperature l i m i t  (128OOF) 

were 'used, the AT would be 25'F since the temperatures i n  the primary NaK loop 

would be urriformly 50' lower, while the temperatures i n  the mercury loop would 

be subs t an t i a l ly  unchanged. This approach assures  t h a t  the systems compared i n  

the study are  capable of operat ing s tably a t  the lower temperature condi t ion of 

the r e a c t o r  coolant.  

of 250°F was chosen a s  the l imit ing c r i t e r i o n  f o r  b o i l e r  operation; on t h i s  
P 

I n  applying t h i s  

P 

P 
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Variat ions i n  turbine output power, caused by b o i l e r  

pressure f luc tua t ions ,  were accounted for i n  the EGS performance ana lys i s  by 

the  following method: 

i n l e t  pressure (240 p s i a  f o r  EGS-0). 

minimum point  i n  i t s  o s c i l l a t i o n ,  the turbine w i l l  produce 37% l e s s  power. 

increment of power is  a l loca ted  t o  the PIX a t  nominal opera t ing  pressure so t h a t  

the speed control  w i l l  have s u f f i c i e n t  margin t o  maintain f u l l  speed a t  the l o w  

point  i n  the pressure cycle .  The power increment budgeted t o  the PLR f o r  b o i l e r  

s t a b i l i t y  i n  the several  systems is :  3 kw i n  EGS-0 and -1; 2 kw i n  EGS-2, -4, 
and -5,  assuming improved b o i l e r  performance and lower mercury flow ra t e s ;  and 

3.0 and 3.3 kw, respect ively,  i n  EGS-3 and -6 which were increased because of 

higher mercury flow r a t e s .  

The system power was balanced a t  the nominal turbine 

When the turb ine  i n l e t  pressure i s  a t  the 

This 

b . Pressure Drop 

I n  conducting the study on each of the systems described, 

the  pressure drop of both the NaK and mercury flow paths of the b o i l e r  was 

varied a s  described below. 

(1) Mercury Pressure Drop 

The equations used t o  express the b o i l e r  mercury 

pressure drop were changed t o  conform t o  the c h a r a c t e r i s t i c s  of the b o i l e r  

se lec ted  f o r  the system. I n  evaluat ing the EGS-0 system, the following mercury 

pressure-drop equation was used: 

AF' = (27.3 + 0.7 AT )(i /11,500)2 P Hg 

/12,000)1'8 + 0.37 AT 
Hg P 

For EGS-1 and -2 

AP = 56 (i 

For EGS-3 

AP = 56 (4 /15,43O)lo8 + 0.25 AT 
Hg P 

For EGS-4 and -5 
AP = 56 (4Hg/13,700)1'8 + 0.25 AT 

P 

For EGS-6 

L1p = 51 p s i  
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I n  each of these equations W 

the AT a t  the mercury pinch-point. 

i n  temperature between the mercury and the NaK a t  the poin t  i n  the b o i l e r  where 

b o i l i n g  s t a r t s .  

i s  the mercury flow r a t e  i n  lb /hr ,  and AT i s  

Pinch point  i s  defined a s  the d i f fe rence  
Hg P 

The equation given for mercury AP f o r  EGS-0 w a s  

obtained from the  tube-in-tube b o i l e r  design ana lys i s  while the equation f o r  

mercury AP used i n  EGS-1 and -2 was obtained empir ical ly  from tes t  da ta  on the 

tube-in-ttibe b o i l e r ,  and, therefore ,  represented the a c t u a l  measured mercury 

pressure drops f o r  the 7-tube mercury b o i l e r .  

r a t e  compatible with 600 kw input f rom the r e a c t o r  made it  necessary t o  increase 

the number of mercury tubes t o  nine.  

ized f o r  nine tubes a t  the same mercury flow per tube and the AT 

was reduced on the assumption of a p o t e n t i a l  improvement i n  b o i l e r  plug design. 

I n  EGS-L and -5> the turbine i n l e t  pressure was increased from 240 to  350 ps i a .  

This chmge resu l ted  i n  modification of the mercury Ap equation t o  account f o r  

the e f f e c t  of the change i n  mercury vapor densi ty  on the pressure drop. For 
EGS-6, i t  was  assumed t h a t  a b o i l e r  with 51 pounds AP could be designed when 

the mercury flow r a t e  i s  14,000 lb/hr.  

I n  EGS-3, a higher mercury flow 

The W term i n  the AP equat ion was normal- 

coef f ic ien t  
P 

( 2) NaK Pres sure Drop 

I n  EGS-0, the b o i l e r  NaK-tube I D  was 4.0 inches 

while the EGS-1 and -2 b o i l e r  was reduced i n  NaK-tube I D  so t h a t  m a x i m u m  

weight reduct ion could be achieved. The reduced NaK-tube I D  i s  3.375 inches 

which increases  the b o i l e r  NaK A€' f r o m  1.5 t o  8.1 p s i  a t  48,100 lb /hr .  

reduced NaK flow r a t e s  f o r  EGS-1 and -2 r e s u l t  i n  NaK AP of 5.6 and 4.3 p s i ,  

respec5ively.  The NaK tube f o r  the  EGS-3 b o i l e r  was increased t o  give the same 

Na.K v e l o c i t i e s  as i n  the o r i g i n a l  bo i le r ;  the NaKAP i n  t h i s  b o i l e r  i s  1.55 p s i  

a t  49,000 lb/hr  . 

The 

Since the s t a t e  po in ts  were changed for the remain- 

ing  systems, it was necessary t o  consider the e f f e c t  of these s t a t e - p o i n t  changes 

on b o i l e r  design requirements. I n  a l l  b o i l e r s  used i n  t h i s  study, a constant 

AT 

band system operat ing condi t ion. .  

v a l w  of 75'F was used f o r  the upper temperature l i m i t  of the reac tor  dead- 
P 
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A s  tu rb ine  i n l e t  pressure increases ,  the  mercury 

b o i l i n g  temperature a t  the poin t  where b o i l i n g  commences a l s o  increases .  

the  r e a c t o r  o u t l e t  temperature i s  constant ,  and a constant  value of 75 AT i s  

required,  the NaK flow r a t e  i n  the primary loop must increase  a s  the  turb ine  in-  

l e t  pressure increases .  Figure 31 shows the r a t i o  of primary NaK flow r a t e  t o  

mercury flow ra te  a s  a func t ion  of turbine i n l e t  p ressure .  Because of t h i s  

r e l a t i o n ,  the NaK tube diameter of the b o i l e r s  f o r  the remaining systems was 

increased t o  reduce the  NaK pressure  drop. 

b o i l e r  was used; for EGS-6, the I D  was increased t o  maintain the same NaK v e l o c i t y  

a s  i n  the EGS-0 b o i l e r .  

b o i l e r s  used i n  the  var ious systems. 

Since 

P 
0 

For EGS-4 and -5, the  I D  of the EGS-0 

Table 16 l i s t s  the  phys ica l  c h a r a c t e r i s t i c s  of the  

C .  Boi le r  Mater ia ls  

The present  SNAP-8 b o i l e r  uses  316 s t a i n l e s s  s t e e l  f o r  

the NaK tube and 9Cr-lMo s t e e l  tubes f o r  the mercury. A t  p resent ,  there  i s  con- 

s iderable  e f f o r t  being expended on the development of ma te r i a l  f o r  the mercury 

tubes which has  higher  s t r eng th  and corrosion r e s i s t ance  a t  opera t ing  tempera- 

t u r e .  The performance p o t e n t i a l  study has been based on the assumption t h a t  

su i t ab le  mater ia ls  w i l l  be  ava i l ab le  f o r  use i n  b o i l e r s  where the pressures  have 

been increased to meet the s t a t e -po in t  requirements f o r  EGS-4, -5, and -6. 

7. E l e c t r i c a l  Sys tem 

The a l t e r n a t o r  e f f i c i e n c y  i s  a func t ion  of the power f a c t o r  

of the  t o t a l  a l t e r n a t o r  load and the gross power output ,  a s  shown i n  Figure 26. 
The t o t a l  a l t e r n a t o r  load i s  made up of the fol lowing:  vehic le  load,  primary 

NaK PMA, mercury PMA, HRL NaK PMA, L/C PMA, SCR speed cont ro l ,  vol tage cont ro l ,  

PLB s t a b i l i t y  allowance , and r eac to r  con t ro l s .  

By adding the kvar values  and the  kw values  of each load, the  

t o t a l  kva load on the a l t e r n a t o r  i s  obtained by taking the square r o o t  of the 

sum of the squares of kvar and kw. 

the  a l t e r n a t o r  load power f a c t o r .  

therefore ,  a function of the  vector  sum of a l l  the  loads on the  a l t e r n a t o r .  

The gross  kw divided by the kva then gives  

The amount of power f a c t o r  co r rec t ion  i s ,  
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When the load t o  the vehic le  i s  reduced by s h i f t i n g  the d i f f e r -  

ence i n  vehic le  load t o  the PLR, the a l t e r n a t o r  load power f a c t o r  changes. This 

i s  due t o  the d i f fe rence  i n  power fac tor  a t  the  poin t  of use.  I n  the PLR, the 

power f a c t o r  i s  e s s e n t i a l l y  1.0 while the  power f a c t o r  of the vehicle  load i s  

0.75 lagging.  Since the PCS cont ro l  system opera tes  on the  b a s i s  of constant  

a l t e r n a t o r  output power, decreasing the vehic le  load r equ i r e s  energy d i s s i p a t i o n  

i n  the PLR. Because of the difference i n  power f a c t o r  between the  vehic le  load 

and the PLR power f a c t o r ,  the power f a c t o r  of the t o t a l  a l t e r n a t o r  load increases  

a s  the vehic le  load decreases .  I n  the f i r s t  fou r  systems, the load power f a c t o r  

was 0.75 and the  a l t e r n a t o r  voltage cont ro l  was assumed t o  be l imi t ed  t o  lagging 

power f a c t o r s  up t o  1.0. For these systems, i t  was considered necessary t o  

l i m i t  the  power f a c t o r  a t  m a x i m u m  vehicle load so t h a t  the a l t e r n a t o r  load 

power f a c t o r  would not  become leading.  The top curve i n  Figure 32 shows the  

v a r i a t t o n  of a l t e rna to r - load  power f a c t o r  a s  a func t ion  of  vehicle  load f o r  an 

e l e c t r i c a l  system using a sa turab le- reac tor  speed con t ro l  having power f a c t o r  

c h a r a c t e r i s t i c s  shown i n  Figure 33, with maximum power f a c t o r  cor rec t ion .  It 

can be seen from t h i s  f i g u r e  tha t  the maximum a l t e r n a t o r  power f a c t o r  a t  100% 

vehic le  load i s  0.91, Ghich becomes 1.0 when the  vehic le  load i s  zero.  This 

curve i s  based on 40-kw m a x i m u m  vehicle load and 42.3 kvar capac i t ive  reactance.  

I f  synchronous pump motors a re  used, only 23.9 kvar capac i t ive  reactance i s  re -  

quired,  s ince 18.4 kvar of inductive reactance i s  removed from the  a l t e r n a t o r  

Load by using these motors. The middle curve i n  Figure 32 shows the e f f e c t  of 

the  synchronous motors on a l t e r n a t o r  power f a c t o r  with no capac i t ive  reactance 

added t o  the system. The lower curve shows the  v a r i a t i o n  of the a l t e r n a t o r -  

load power f a c t o r  with induct ion motors on the  pumps, and no capac i t ive  re- 

actance added as i n  the  EGS-0 and -1 systems. 

f a c t o r  v a r i a t i o n  occurs with changing vehic le  load when a n  SCR-type speed con- 

t r o l  i s  used; i t s  power f a c t o r  c h a r a c t e r i s t i c s  a l s o  a r e  shown i n  Figure 33. 
Thus, the  a l t e r n a t o r  load power f ac to r  v a r i e s  t o  some ex ten t  regard less  of the 

type of speed con t ro l  used. 

Similar  a l t e rna to r - load  power 

With the exception of EGS-0 and -1, a l l  systems use L/C- 

cooled capac i to r s  t o  obta in  power f ac to r  co r rec t ions .  The capac i tors  r e j e c t  

approximately 100 wat t s  of hea t  t o  the L/C loop coolant .  
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During the course of the performance p o t e n t i a l  study, it w a s  

learned t h a t  the a l t e r n a t o r  vol tage con t ro l  would operate down t o  0.92 leading  

power f a c t o r  a t  a gross  output  of 60 kwe. 

determined by the vol tage r egu la to r  c h a r a c t e r i s t i c s  which r e s u l t  i n  increas ing  

output  vol tage when the  power f a c t o r  decreases  i n  the  lead ing  d i r e c t i o n .  

lagging power fac tor  i s  l imi t ed  by the  temperature r i s e  of the  a l t e r n a t o r  wind- 

ings and i s ,  therefore ,  a func t ion  of the gross  kw output of the a l t e r n a t o r .  

A t  55 h e ,  which i s  representa t ive  of those systems t h a t  produce 40 kwe n e t  

power, the  lowest a l t e rna to r - load  power f a c t o r  i s  0.66 lagging.  This l i m i t  

i s  e s t ab l i shed  by the maximum temperature r i s e  of the a l t e r n a t o r  windings 

commensurate with in su la t ion  l i f e  and r e l i a b i l i t y .  The vehicle- load power 

f a c t o r  a l s o  was increased from 0.75 lagging  t o  0.85 lagging which reduces the 

e f f e c t  of changing vehicle  load on the ne t  a l t e r n a t o r  power f a c t o r .  A s  a re- 
s u l t  of these input changes, the system performance of EGS-4, -5, and -6 have 

been evaluated a t  a ne t  a l t e r n a t o r  power f a c t o r  of 1.0 a t  f u l l  vehic le  load .  

The leading  power f a c t o r  l i m i t  i s  

The 

Table 17 gives the capac i t ive  reactance required f o r  each 

EGS where the power f a c t o r  of the a l t e r n a t o r  has been cor rec ted .  

s en ta t ive  example, a 42.3 kvar condenser assembly w i l l  weigh approximately 

25 lb and have dimensions of 8 x 8 x 9 inches,  i f  made up a s  a s ing le  assembly. 

There i s  an advantage, however, i n  making the power f a c t o r  cor rec t ions  a t  each 

load .  

corrected loca l ly ,  t h i s  w i l l  e i t h e r  reduce the s t a r t u p  b a t t e r y  and i n v e r t e r  

requirements,  or provide b e t t e r  motor s t a r t u p  torque.  Also, by co r rec t ing  

the power f a c t o r  of each ind iv idua l  load, a t  the load,  the ne t  power f a c t o r  

of the a l t e r n a t o r  w i l l  not be a f f ec t ed  a s  much by the changing vehicle  load .  

These considerat ions should be evaluated i n  more d e t a i l  for any s p e c i f i c  

app l i ca t ion .  

A s  a repre-  

For example, if the  power f a c t o r  of the ind iv idua l  pump motors i s  

8. Components Not Modified 

In  t h i s  s ec t ion ,  the  components a r e  noted which were reviewed 

f o r  poss ib le  performance improvement b u t  not  modified. Modifications here 

imply a change i n  performance c h a r a c t e r i s t i c s  and do not include changes made 
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i n  a component which may be required for changes i n  flow r a t e .  Components 

which have not been changed i n  c h a r a c t e r i s t i c s  a r e :  mercury condenser; a l t e r -  

nator ;  mercury PMA; s t a r t u p  components, such a s  b a t t e r i e s  and inve r t e r ;  e l e c -  

t r i c a l  components, such a s  'voltage control ,  sequencer, vehic le  load switch, 

power t ransmission cable ,  and PIB; valves, such a s  the mercury f low-control  

valve,  NaK temperature-control valve,  a u x i l i a r y  NaK star tup-loop shutoff valve,  

and L/C loop shutof f  valves;  mercury i n j e c t i o n  system; expansion r e se rvo i r s ;  

a rd  L/C PMA. I n  EGS-3 and -6, the mercury condenser was changed i n  s i z e  only 

t o  accommodate the increased mercury flow r a t e s .  The number of mercury tubes 

was incrsased  from 73 t o  85 tubes.  

The a l t e r n a t o r  was found t o  have s u f f i c i e n t  power output  

c a p a b i l i t y  when the load power f ac to r  w a s  increased f o r  most of the systems; 

poss ib le  exceptions were EGS-3 and -6. 
t o r s  t e s t e d  ind ica ted  a m a x i m u m  kva range of 83 t o  89 before  the end-turn 

temperatures exceeded the 200 C l i m i t a t i o n  imposed by the ML organic  insu la-  

t i o n  used i n  t h i s  component. 

The d i f f e rences  i n  ind iv idua l  a l t e rna -  

0 

The mercury PMA was found t o  have ample head r i s e  f o r  a l l  

systems s tudied  even when turbine i n l e t  p ressures  of 400 p s i a  a r e  used. How- 

ever ,  the  motor scavenger s l i n g e r  was removed f o r  EGS-4, -5, and -6 t o  reduce 

t h e  pump motor input  power requirement. 

S t a r tup  components, such a s  b a t t e r i e s  and the inve r t e r ,  were 

not changed. The performance p o t e n t i a l  study was l imi t ed  t o  improvements i n  

s t eady- s t a t e  performance of the  SNAP-8 EG systems so t h a t  s t a r t u p  procedures 

and improvements were not included i n  t h i s  study. 

The vol tage control ,  s t a r t  programmer, vehic le  load switch, 

power buss, and the PLB were considered s a t i s f a c t o r y  f o r  a l l  systems s tudied .  

There a r e  some condi t ions of operation which may make i t  des i r ab le  t o  improve 

the  vol tage  con t ro l  so t h a t  the  output voltage of the a l t e r n a t o r  w i l l  remain 

w i t h i n  spec i f ied  l i m i t s  over a grea te r  lead ing  power-factor range. However, 

the  amount of power f a c t o r  correct ion,  and the manner i n  which it  i s  appl ied,  

may make t h i s  unnecessary. 

N a K  loop t o  the  ER NaK loop i n  EGS-4, -5, and -6. 
ope ra t ing  temperature of the res i s tance  elements and increases  the r e l i a b i l i t y  

The loca t ion  of the PL;R was  changed from the  primary 

This change reduces the 
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and l i f e  of t h i s  component. 

HRL NaK rad ia to r  a r ea .  

The penal ty  for  t h i s  i s  4 t o  7 sq f t  of a d d i t i o n a l  

The valves used i n  the  SNAP-8 PCS a re  re ta ined  for a l l  of 

the  systems analyzed f o r  performance i n  t h i s  s tudy.  

The MIS concept has been r e t a ined  and the only changes made 

were i n  capacity.  The m r c u r y  inventory of the  var ious  EG systems changes so 

t h a t  the MIS reservoi r  must be changed. 

Expansion r e s e r v o i r s  for the  NaK and L/C loops w i l l  vary i n  

capac i ty  requirements i n  proport ion t o  the r e spec t ive  loop inventory v a r i a t i o n s .  

The b a s i c  design concept f o r  these components was no t  changed But the weights 

of these  components were changed i n  accordance w i t h  the  loop inventor ies  f o r  

each of the  EG systems s tudied .  

The L/C PMA was considered s a t i s f a c t o r y  f o r  a l l  systems 

s tudied .  

D. IMPROVEMENT BY SYSTEM MODIFICATIONS 

I n  addi t ion  t o  changes i n  component c h a r a c t e r i s t i c s ,  the  e f f e c t  of 

s t a t e -po in t  changes i n  the mercury loop and o the r  system changes on o v e r a l l  

system performance w a s  evaluated f o r  app l i ca t ion  t o  EGS-4, -5, and -6. The 

Rankine-cycle e f f i c i ency  and, therefore ,  the o v e r a l l  system e f f i c i e n c y  increases  

with turb ine  pressure r a t i o  increase .  The purpose of t h i s  p a r t  of the study was 

t o  determine whether any worthwhile performance improvement could be r e a l i z e d  

by opera t ing  a t  new turb ine  i n l e t  and e x i t  p ressures  (but  without changing the 

m a x i m u m  system temperature of 1300 F nominal a t  the  r eac to r  o u t l e t ) .  A secon- 

dary  and r e l a t ed  purpose of the  ana lys i s  was  concerned with reducing r a d i a t o r  

a r ea  by increasing e f f e c t i v e  r a d i a t i n g  temperature.  

c a l c u l a t i n g  r ad ia to r  a r ea  f o r  d i f f e r e n t  values  of temperature drop through the  

r a d i a t o r  a t  severa l  s t a t e -po in t s .  I n  summary, i t  was found t h a t  s~Ap-8 
performance could be improved by ad jus t ing  the turb ine  i n l e t  p ressure ,  bu t  

t h i s  i s  f eas ib l e  only i n  conjunction wi th  o the r  improvements; i .e . ,  component 

0 

This was evaluated by 
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modif icat ions previously discussed 

-5,  and -6 a r e  compared with those used i n  EGS-0 a s  fol lows:  

The s t a t e -po in t s  se lec ted  f o r  use i n  EGS-4, 

Turbine i n l e t  pressure,  p s i a  

Turbine e x i t  pressure,  p s i a  

Radiator  NaKAT, F 0 

EGS-0 EGS-4, -5, -6 

350 240 
14.5  14.5 

150 1 72 

1. Scope of the S ta tepoin t  A n a l y e  

The s t a t e p o i n t  ana lys i s  comprised a s e r i e s  of s teady-s ta te  

computsr runs i n  which turbine i n l e t  and e x i t  p ressures  and HRL r a d i a t o r  temper- 

a t u r e  drop were var ied independently.  

the  e f f e c t  of these va r i ab le s  on SNAP-8 system performance. 

were made with output power f ixed  a t  40 kwe. However, a few runs were a l s o  made 

with input  ( r e a c t o r )  power f ixed  a t  600 kwt t o  determine whether the same s t a t e -  

po in t s  would be s a t i s f a c t o r y  a t  the higher power condi t ion.  Turbine i n l e t  pres- 

s w e  w a s  var ied from 250 t o  450 ps ia ,  e x i t  pressure from 8.5 t o  32.5 ps i a  and 

HRL r a d i a t o r  AT from 100 t o  2OO0F. Other considerat ions accounted f o r  i n  the 

a n a l y s i s  regarding component c h a r a c t e r i s t i c s  a r e  described i n  the following 

paragraphs.  

Over bC computer runs were made t o  show 

Most of the runs 

a .  Treatment of Turbine Eff ic iency  

Since turbine e f f i c i e n c y  i s  inf luenced by the pressure 

r a t i o  across  the  turbine and s ince  the pressure r a t i o  var ied  from 8 t o  53 over 

the  range of pressures  covered, i t  was necessary t o  develop a turb ine  e f f i c i ency /  

pressure  r a t i o  func t ion  f o r  use i n  the ana lys i s .  A t  the  higher  pressure r a t i o s ,  

tu rb ine  e f f i c i ency  i s  reduced a s  a r e s u l t  of reduced a r c  of admission i n  the 

f i r s t  t w o  s tages  and increased d isk  lo s ses  a t  higher s tage  pressures .  The tu r -  
b ine  e f f i c i e c c y  c h a r a c t e r i s t i c  developed f o r  the s t a t e p o i n t  ana lys i s  i s  shown i n  

Figure 34. 
EGS-4, -5, and -6. 
t i onsh ip  

These values a r e  a l s o  used i n  the system performance ana lys i s  f o r  

Appendix C descr ibes  i n  d e t a i l  the development of this  rela- 
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b. HRL Radiator Temperature Conditions 

The temperature of the NaK en te r ing  the HRL r a d i a t o r  v a r i e s  

as the turbine e x i t  pressure inc reases .  A t  h igher  turbine e x i t  pressures  the con- 

densing temperature i s  higher ,  corresponding t o  mercury sa tu ra t ion  condi t ions.  

The temperature of the NaK leaving the condenser i s  r e l a t e d  t o  the condensing 

temperature. 

condensing temperature aFd the NaK temperature en te r ing  the r a d i a t o r  was assumed. 

Therefore, increasing the tu rb ine  ex i t  pressure automatical ly  inc reases  the e f f ec -  

t i v e  r a d i a t o r  temperature, thereby reducing r a d i a t o r  a r e a .  The r e l a t i o n s h i p  be- 

tween turbine e x i t  pressure and NaK temperature e n t e r i n g  the r a d i a t o r  was as 

follows : 

0 For purposes of t h i s  ana lys i s ,  a drop of 10 F between the mercury 

Turbine E x i t  Pressure Radiator I n l e  t Tempe r a t  ure 
F 0 p s i a  

8.5 607 

20.5 696 
26.5 724 
32.5 748 

14.5 660 

The temperature drop across  the r a d i a t o r  was varied independently f o r  each con- 

d i t i o n  of turbine e x i t  pressure t o  explore optimum r a d i a t o r  a r ea  f o r  each e x i t  

pressure a 

c .  Other Component C h a r a c t e r i s t i c s  Used i n  the 
State-point  Analysis 

(1) Lube/Coolant r a d i a t o r  temperature were held constant  

a t  243OF i n  and 210°F ou t .  

( 2 )  Temperature leaving the  r eac to r  was maintained a t  

1330°F. 
allowing f o r  a small hea t  loss from the p ipe .  

The temperature e n t e r i n g  the b o i l e r  i s  only one o r  two degrees less ,  

(3) The b o i l e r  pressure drop was defined by the follow- 

i n g  equation which was l a t e r  used for EGS-4 and -5  as we l l :  
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(4) The pinch-point temperature difference i n  the  
0 b o i l e r  was maintained a t  75 F. This means t h a t  a s  tu rb ine  i n l e t  pressure increased,  

mercury b o i l i n g  pressure increased,  and hence the  mercury temperature i n  the b o i l e r  

a t  the pinch-point.  This, i n  t u rn ,  required an increase i n  the NaK temperature i n  

the  b o i l e r  a t  the pinch-point.  Since the  temperature en te r ing  the  b o i l e r  was 

e s s e n t i a l l y  constant ,  the temperature drop of NaK i n  the b o i l e r  then decreased, 

and the  NaK flow r a t e  increased i n  order t o  t r a n s f e r  the required hea t  r a t e .  

HeDce the NaK flow r a t e  i n  the primary loop w a s  s ens i t i ve  t o  the turb ine  i n l e t  

p ressure  and, i n  f a c t ,  l imi t ed  the m a x i m u m  tu rb ine  i n l e t  pressure which could be 

considered 

( 5 )  For the two NaK PMA' s i t  was found necessary t o  

"customize" the pumps and t o  reduce loop pressure drop i n  order  t o  meet the  wide 

v a r i a t i o n  i n  flow r a t e s  i n  the  PNL and HRL. The NaK PMA c h a r a c t e r i s t i c s  used 

were very s imi l a r  bu t  not i d e n t i c a l  t o  those shown i n  Figure 21. Loop pressure  

drop data a r e  discussed f u r t h e r  i n  paragraph 2 .b . (3) , below. 

d .  I n  general ,  the systems character ized i n  the s t a t e p o i n t  

ana lys i s  approximate, b u t  do not match p rec i se ly ,  the  condi t ions t h a t  were l a t e r  

def ined i n  charac te r iz ing  EGS-4. 

cha rac t e r i ze  any p a r t i c u l a r  system b u t  t o  provide a b a s i s  f o r  eva lua t ing  the  

e f f e c t s  of the se lec ted  independent va r i ab le s .  

However, the purpose of the ana lys i s  was not t o  

2 .  Resul ts  of State-Point Analysis 

a .  Discussion of Resul ts  

The r e s u l t s  of the s t a t e -po in t  ana lys i s  a r e  shown i n  

Figures  35 and 36. Figure 35 shows the v a r i a t i o n  of r e a c t o r  input  power, t o t a l  

r a d i a t o r  a r ea ,  p a r a s i t i c  load,  Rankine-cycle e f f i c i ency ,  and o v e r a l l  system e f f i -  

ciency with turb ine  i n l e t  pressure f o r  a constant  ne t  output of 40 h e ,  r a d i a t o r  

NaK AT of 150°F , and L/C r a d i a t o r  AT of 33OF. 

The t o t a l  r ad ia to r  a r ea  curves include both the HRL radi- 

a t o r  and L/C r a d i a t o r  a r eas .  

occurs a t  a tu rb ine  i n l e t  pressure of 400 p s i a ,  the minimum r a d i a t o r  a r ea  i s  

reached a t  a tu rb ine  exhaust pressure of 26.5 psia;  however, exhaust pressures  

Of 20.5 and 32.5 ps i a  a l s o  r e s u l t  i n  very near the minimum t o t a l  r a d i a t o r  a r ea .  

The r e s u l t s  i n d i c a t e  t h a t  minimum r a d i a t o r  a rea  
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The curves of p a r a s i t i c  power i n  Figure 35 r i s e  sharply a s  

tu rb ice  i n l e t  pressure increases  above 400 p s i a .  

demand by the primary NaK PMA corresponding t o  increas ing  NaK flow r a t e s .  NaK 

This i s  due t o  increas ing  power 
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0 flow m m t  increase a s  turbine i n l e t  p ressure  r i s e s  i n  order  t o  maintain a 75 F 

pinch-point AT i n  the  b o i l e r .  For example, a t  350 p s i a  tu rb ine  i n l e t  p ressure  

and 14.5 p s i a  e x i t  p ressure ,  the primary NaK flow i s  44,100 lb /hr ;  a t  450 and 

14.5 ps i a  turbine pressures ,  the NaK flow i s  68,400 l b / h r .  

i l l u s t r a t e d  i n  Figure 31. Flow rates i n  the mercury loop and hea t  r e j e c t i o n  

loop a re  v i r t o a l l y  ucchanged over t h i s  same range of condi t ions .  

tu rb ine  e x i t  pressures ,  the  increase  i n  p a r a s i t i c  power i s  more pronounced be- 

CSUSP f low r a t e s  i n  a l l  loops a re  higher ,  r e f l e c t i n g  lower o v e r a l l  e f f i c i e n c i e s .  

This e f f e c t  a l s o  i s  

A t  the h igher  

The Rankine-cycle e f f i c i e n c y  curves a r e  a d i r e c t  r e s u l t  

of the i x r e a s e d  ava i l ab le  energy due t o  the  higher  tu rb ine  pressure  r a t i o s .  

Overal l  system e f f i c i e n c i e s  tend t o  fol low the t rend i n  Rankine-cycle e f f i c i e n c i e s  

u E t i l  the  p a r a s i t i c  load increases  a t  the higher  tu rb ine  i n l e t  p ressures  causes 

a drop.  

ciency i s  zear ly  constant a t  tu rb ine  i n l e t  p ressures  ranging from 350 t o  450 p s i a .  

For a turbine exhaust pressure of 1 4 . 5  p s i a ,  the o v e r a l l  system e f f i -  

Another independent parameter i n  determining system per- 

formance, and p a r t i c u l a r l y  the H3L r a d i a t o r  a rea ,  i s  the NaK AT i n  the r a d i a t o r .  
0 Valkes of RaK AT considered were 100, 125, 150, and 175 F. Decreasing the NaK 

AT incPeases the average HBL r a d i a t o r  temperAture and thus decreases  i t s  s i z e .  

Figure 36 shows the  e f f e c t  of NaK r a d i a t o r  AT on t o t a l  r a d i a t o r  a r e a .  Included 

ir! th i s  'curve i s  a l i n e  def in ing  the reg ion  of NPSH d i f f i c u l t i e s .  A s  the AT of 

tbe r a d i a t o r  decreases,  the amount of subcooling of the  mercury decreases which 

reduces the NPSE ava i lab le  a t  the MPMA. To avoid NPSH problems, i t  i s  necessary 

t o  operate  a t  turbine exhaust pressures  and NaK r a d i a t o r  AT values  which a r e  i n  

the region below the marginal NPSH l i n e .  

The t o t a l  r a d i a t o r  a rea  appears t o  be a l i n e a r  func t ion  

of NaK r a d i a t o r  AT a t  constant t w b i n e  back pressure  u n t i l  NaK AT values  of 

125 F a r e  reached. Below t h i s  value,  the HRL NaK flow r a t e s  increase  s u f f i -  

c i e n t l y  t o  make the HRPMA pumping power requirements s t a r t  i nc reas ing  the  mercury 
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flow r a t e s  t o  supply the necessary addi t iona l  pumping power. 

l e v e l i n g  o f f  of r a d i a t o r  a r ea  reduction f o r  values of NaK r a d i a t o r  AT of 100°F 

or l e s s .  

This resu l t s  i n  a 

For a turbine back pressure of 14.5 ps i a ,  the minimum 

r a d i a t o r  NaK AT i s  150°F which i s  es tab l i shed  by NPSH cons idera t ions .  

s u l t s  i n  a t o t a l  r a d i a t o r  a r ea  of about 990 sq f t .  

b ine  exhaust pressures ,  a reduct ion i n  t o t a l  r a d i a t o r  a r ea  r e s u l t s  from the 

hi.gher r a d i a t o r  i n l e t  temperatures and the  NPSH l i m i t a t i o n  allows the r ad ia to r  

NaK AT t o  be reduced t o  100°F. 

This r e -  

For 20.5 and 26.5 ps ia  tur -  

This combination r e s u l t s  i n  a t o t a l  r a d i a t o r  

a r ea  of about 9 0  sq f t  or a t o t a l  reduction of about 9.1 percent .  

b . Component E f fec t s  

(1) Mercury Pump NPSH 

The NPSH requirement of the  present  MPMA l i m i t s  

the  tzzj_.bine e x i t  pressure t o  14.5 psia  i n  zero g rav i ty  when the  HRL r a d i a t o r  

NaK AT i s  150°F. 

j e t  pump design,  probably enough t o  p e r m i t  operat ion a t  8.5 p s i a  turb ine  e x i t  

p ressure .  However, t o  operate a t  t h i s  condi t ion would requi re  an increase  i n  

r a d i a t o r  a r e a .  This approach t o  system design might be of i n t e r e s t  i n  some 

app l i ca t ions  where r a d i a t o r  a rea  i s  not a r e s t r a i n t .  

The pump NPSH performmce could be improved by modifying the 

(2) Turbine 

A t  the se lec ted  s t a t e -po in t  of 350 p s i a  i n l e t  and 

14.5 p s i a  e x i t  pressure,  the  o v e r a l l  tu rb ine  pressure r a t i o  i s  24.2. 
s u l t s  i n  an average s tage-pressure r a t i o  of 2.22 which produces a nozzle e x i t  

Mach number of 1.06. For t h i s  Mach number i t  i s  considered f e a s i b l e  t o  r e t a i n  

the  four-s tage design with converging nozzles so  tha t  turbine overhang does not 

need t o  be increased t o  allow f o r  nozzle divergence. De ta i l s  of the turb ine  

design parameters and the  r e s u l t i n g  turb ine  e f f i c i e n c y  vs  pressure r a t i o  and 

number of tu rb ine  s tages  a r e  given in  Appendix C .  It was concluded from t h i s  

a l la lysis  t h a t  when the  tu rb ine  i s  designed f o r  the opera t ing  condi t ions se l ec t ed ,  

t he  tu rb ine  e f f i c i ency  does not change g r e a t l y .  It should be noted t h a t  each EGS 

This re -  
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study assumed t h a t  the turb ine  flow a reas  were modified t o  accommodate the  

mercury flow r a t e  defined by the  system ana lys i s .  

the pressures  shown for the respec t ive  systems. 

This i s  necessary t o  meet 

(3)  NaK PMA L i m i t s  

( a )  Primary Loop 

The NaK flow r a t e  and the primary NaK loop 

pressure drGp determine the primary NaK-loop ptunping requirements e I n  the s t a t e -  

po ic t  ana lys i s ,  i t  was an t i c ipa t ed  t h a t  the primary NaK loop AP would become very 

high a s  tu-rktne i n l e t  p ressure  increased.  Consequently, t h i s  loop was modified 

t o  reduce i t s  impedance. The NaK l i n e s  were enlarged t o  2.25 i n .  OD, the b o i l e r  

NaK t&e  was enlarged t o  4 i n .  ID and the low AP advanced r eac to r  was used. 

with these changes, the  5800-rpm SNAP-8 NaK PIN l imi t ed  the turb ine  i n l e t  p res+  

sures because of i n s u f f i c i e n t  head r i s e .  The turb ine  i n l e t  p ressures  a t  which 

the  NaK PMA became l i m i t i n g  i s  shown i n  Figure 35. This da t a  app l i e s  t o  a system 

designed t o  produce 40 kwe ne t  output power. 

input  power, the N a K  PMA would l i m i t  the  turb ine  i n l e t  pressure t o  270 p s i a  with 

a 14.5 psi3 turbine exhaust pressure .  

Even 

It w a s  es t imated t h a t  a t  600 kwt  

(b )  Heat Reject ion Loop 

I n  t h i s  loop, the  p-mp l i m i t  occurs a t  l o w  

r a t h e r  than high turb ine  i n l e t  pressure and a t  high values  of exhaust p re s su re .  

This i s  trile because the hea t  r e j e c t i o c  requirements increase  a t  the  l o w  turb ine  

i d e t  pressures  a s  system e f f i c i e n c y  f a l l s  o f f .  However, the HRL loop condi t ions 

a r e  ulot as  c r i t i c a l  a s  those i n  the primary loop.  

a t  tu rb ine  pressure condi t ions of i n t e r e s t  i n  the s t a t e - p o i c t  study. 

The IiIiL PMA was not l i m i t i n g  

I n  summary, i t  becomes apparent t h a t  the 

s t a t e -po in t  limits f o r  the NaK PMA's a r e  va r i ab le ,  depending on the loop design.  

Whel? the  limit i s  c lose  t o  the des i red  s t a t e -po in t ,  a s l i g h t  modif icat ion i n  com- 

ponent o r  piping pressure  drop may be s u f f i c i e n t  t o  permit the use of an e x i s t i n g  

NaK PMA. 
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e .  Basis for Select ion of New Sta te -Poin ts  

The r e s u l t s  sought from t h i s  ana lys i s  were twofold: an 

increase  i n  o v e r a l l  e f f i c i ency  and a reduct ion i n  t o t a l  r a d i a t o r  a r ea .  An ex- 

amination of Figure 35 shows t h a t  an increase i n  turb ine  i n l e t  p ressure  (above 

the 240 p s i a  used i n  EGS-0 through - 3 )  i s  advantageous up t o  about 400 p s i a .  

Since the curves a r e  r e l a t i v e l y  f l a t  between 350 and 400 p s i a ,  and s ince the  

higher i n l e t  p ressure  i s  l e s s  a t t r a c t i v e  a t  maximum power (EGS-6) condi t ions,  a 

value of 350 p s i a  was se l ec t ed .  

In choosing turbine e x i t  pressure,  Figure 35 shows t h a t  

i t  i s  not  possible  t o  optimize f o r  both o v e r a l l  e f f i c i ency  and r a d i a t o r  a r e a .  

However, there  i s  no advantage i n  choosing an e x i t  pressure above 20.5 p s i a .  A t  

the o ther  end of the range, an e x i t  pressure of 8.5 ps ia  causes a r a t h e r  l a r g e  

pena l ty  i n  r a d i a t o r  a rea  (-100 sq f t  g rea t e r  than 14.5 p s i a ) .  

choice of exhaust pressures  between 14.5 and 20.5 p s i a .  

four  percent  reduct ion i n  r a d i a t o r  area by going t o  20.5 p s i a ,  14.5 ps i a  was 

se lec ted  because i t  r e s u l t s  i n  a higher net  power output f o r  EGS-6. 

This leaves a 

Since there  i s  only a 

The se l ec t ion  of the r a d i a t o r  AT was based on Figure 36. 
This f i g u r e  shows tha t  150°F i s  the lowest AT value which could be se lec ted  a t  

14.5 p s i a  turbine e x i t  pressure without jeopardizing mercury pump suc t ion  pres-  

sure .  

3.  NaK PMA's Cooled by HRL NaK 

Apart from the  s ta te -poin t  ana lys i s ,  another kind of system 

modif icat ion was made i n  order  t o  reduce the L/C r a d i a t o r  a rea  requirements.  

This modif icat ion consis ted of using HRL NaK t o  cool the NaK PMA's i n  EGS-2 

through -6. 
i s  es t imated t o  be 46% of the e l e c t r i c a l  input .  

r a d i a t o r  a rea  (HRL + L/C) amounts t o  about 1 5  sq  f t / k w  t r ans fe r r ed  from the L/C 

r a d i a t o r  t o  the HRL r a d i a t o r .  The use of HRL NaK t o  cool  these components i s  

discussed i n  Sect ion V,C,2. 

The amount of hea t  r e j ec t ed  by the  NaK PMA's t o  the cooling c i r c u i t  

The n e t  reduct ion  of t o t a l  
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a l s o  was inves t iga ted .  Since the  subcooled l i q u i d  mercury temperature i s  very 

near the coridenser i n l e t  NaK temperature t h i s  could be done. However, cooling 

of both NaK PMA's i s  required during s t a r t u p  and shutdown when mercury flow i s  

not ava i l ab le .  Therefore, t h i s  method of cooling the NaK PMA's was not used. 
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V I .  PERFORMANCE OF IMPROVED SYSTEMS 

This  s ec t ion  of t h e  r epor t  describes b r i e f l y  t h e  modifications i n -  

cmporated i n  each of t h e  s i x  improved SNAP-8 systems and summarizes t h e  i m -  

pact of  t h e  modifications on system performance. 

of each system are presented i n  a summary performance cha r t  similar t o  t h a t  

given i n  Figure 16 f o r  t h e  base l ine  system. It w i l l  be  seen t h a t  each EGS i n -  
corporates a f e w  changes from i t s  predecessor; by t h i s  technique, t h e  r e l a t i v e  

importance of t h e  d i f f e r e n t  modifications can be assessed. However, t h e  n e t  

output power of t h e  system increased t o  only 38.1 kw, a gain o f  2 .1  kw. 

still not possible  t o  obtain t h e  desired 40 kw n e t  output because t h e  system 

w a s  l i m i t e d  by t h e  a l t e r n a t o r  design l i m i t  o f  90 kva. The gain i n  t u r b i n e  

e f f i c i e n c y  i s  r e f l e c t e d  i n  lower l o o p  flow rates and i n  higher  o v e r a l l  

eff ic iency.  These advantages r e s u l t  i n  s l i g h t l y  lower pumping losses ,  and i n  

considerably lower HRL r a d i a t o r  area. 

243 lb/kwe as a consequence of t h e  PCS component weight reductions,  the lower 

r a d i a t a r  area, and a small increase i n  n e t  output power. 

The r e s u l t s  of t h e  a n a l y s i s  

It w a s  

Spec i f i c  weight decreases from 306 t o  

I n  summary, some progress i s  seen i n  EGS-1 i n  improving weight, e f f i c i e n c y  

and r a d i a t o r  area. But it i s  c l e a r  t h a t  a d d i t i o n a l  modifications are needed i f  

t h e  system i s  t o  be capable of  any s i g n i f i c a n t  growth i n  output power. 

A. EGS-1 

EGS-1 incorporates only two improvements over EGS-0. The f irst  is  

t h e  replacement of t h e  tu rb ine  with a new t u r b i n e  of higher  e f f i c i ency  and 

ad jus t ed  flow areas t h a t  are compatible with t h e  reduced mercury flow rate. The 

second i s  t h a t  i s  includes weight-reduced components which r e su l t ed  from t h e  

weight reduction study made as p a r t  o f  t h i s  program. This system was analysed 

t o  determine t h e  e f f e c t  of t hese  changes on system performance. The r e s u l t s  of 

t h i s  ana lys i s  are summarized i n  Figure 37 which may be compared t o  t h e  

corresponding summary f o r  EGS-0 t h a t  i s  shown i n  Figure 16. 
breakdown i s  presented i n  Appendix B. 

A d e t a i l e d  weight 

The t u r b i n e  modifications increased t h e  aerodynamic e f f i c i e n c y  t o  

64.4% from 57.0%. (The modifications are described i n  Sect ion V,C ,  above. ) 
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This system incorporates  add i t iona l  modifications whose purpose was 

t o  increase  a l t e rna to r  eff ic iency,  reduce p a r a s i t i c  loads,  and reduce r a d i a t o r  

area. The following changes from EGS-1 were made: 

1. The e f f ec t ive  a l t e r n a t o r  power f a c t o r  w a s  r a i sed  t o  0.90 by 

means of capacitors.  This e f f e c t i v e l y  increases  a l t e r n a t o r  e f f i c i ency  from 

0.86 t o  0.89. 

2. Both NaK PMA's were modified t o  operate  a t  4800 rpm using 

syrchronous motors r a t h e r  than a t  5800 rpm with induct ion motors. 

reduces pa ras i t i c  power by 3.6 kw. 
advantage i n  reducing t h e  s i z e  of t h e  capac i tors  f o r  power f a c t o r  cor rec t ion .  

I n  t h e  la ter  systems they were abandoned i n  favor  of lower speed induct ion 

motors which provide equivalent gain i n  reducing p a r a s i t i c  power. 

This change 

The synchronous motors a f fo rd  a s l i g h t  

3. The speed con t ro l  design w a s  changed from a magnetic-amplifier 

s a t w a b l e  reactor  type t o  a s i l i c o n  cont ro l led  r e c t i f i e r  (SCR) type.  

s u b s t i t u t i o n  reduces p a r a s i t i c  power by 2.0 kw. 

This 

4. The b o i l e r  s t a b i l i t y  allowance t o  t h e  PLR w a s  reduced from 3 
t o  2 kw, thereby f u r t h e r  reducing p a r a s i t i c  power by 1 kw. 

5. The NaK PMA's were cooled by HRL N a K  a t  500°F. This 

modification reduces t h e  r a d i a t o r  area by 39 sq f t  by s h i f t i n g  2.6 kw of hea t  

from t h e  low temperature r a d i a t o r  t o  the HRL r a d i a t o r .  

The e f f e c t  of t hese  modifications on o v e r a l l  system performance i s  

seen by comparing t h e  EGS-2 Summary Performance Chart, Figure 38, w i t h  t h e  

similar char t  f o r  EGS-1. 

9.6%. 
difficulty i n  reaching 40 kwe ne t  output.  

t o  13.0 kw, indicat ing a t  l e a s t  t h a t  much p o t e n t i a l  increase  i n  ne t  power over 

EGS-1. Radiator a r ea  i s  decreased by more than 200 sq f t .  EGS weight drops 

376 lb primarily dute t o  reduct ion i n  r a d i a t o r  area. 

down f o r  EGS-2 i s  given i n  Appendix B. 

The o v e r a l l  e f f ic iency  has increased from 8.2% t o  

Loop flow rates and a l t e r n a t o r  kva are lowered so  that there is  no 

P a r a s i t i c  power is  reduced 6.5 kw 

A d e t a i l e d  weight break- 
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Altogether  EGS-2 shows s i g n i f i c a n t  improvement over t h e  base l ine  

SNAP-8 system i n  a l l  performance aspec ts .  

a t t a i n e d  by r e l a t i v e l y  simple changes i n  components. 

t o  y i e l d  40 kwe ne t  output,  exh ib i t s  a p o t e n t i a l  f o r  producing considerably 

g r e a t e r  power. 

Moreover, t h i s  improvement has been 

The system, as ca lcu la ted  

This f ea tu re  i s  evaluated as t h e  next  s t e p  i n  t h e  s tudy.  

C. EGS-3 

I n  t h i s  system, t h e  power growth p o t e n t i a l  of  SNAP-8 was evaluated.  

This w a s  d m e  by f i x i n g  t h e  r e a c t o r  input power a t  i t s  maximum r a t i n g  of  600 kw, 

and computing the ne t  output power. EGS-3 incorporates  t h e  component improve- 

ments previously i d e n t i f i e d  and used i n  t h e  ana lys i s  of EGS-2. 
was necessary t o  scale-up t h e  flow areas  of many of  t h e  components, s ince  t h e  

flow rates i n  both of t he  NaK loops and i n  t h e  mercury loop increase  approx- 

imately i n  proportion t o  t h e  r eac to r  power. 

ment can be  made without exceeding the  l i m i t s  of  fundamental opera t ing  

parameters, such as f l o w  v e l o c i t i e s ,  demonstrated by t e s t .  Changes of  th i s  type 

assumed i n  analyzing EGS-3 a r e  out l ined below: 

I n  addi t ion ,  it 

This kind of dimensional ad jus t -  

1. The tu rb ine  flow passages were enlarged about 12% over t h e  

This degree of change requi res  an increase  of nozzle cu r ren t  s~W?-8 design. 

and b lade  he ight  of approximately 1/16 in . ,  or f o r  t h e  f i rs t  two s t ages  an i n -  

c rease  i n  the admission a r c  of from 38 t o  43%. 

2. The b o i l e r  flow passages f o r  both mercury and NaK were en- 

l a rged  by increas ing  t h e  number of mercury tubes from 7 t o  9 and by r e s t o r i n g  

t h e  4.0 in .  I D  of  the NaK tube (It had been reduced t o  3.25 in .  i n  EGS-1 and -2). 

3.  The condenser w a s  enlarged by increas ing  t h e  number of mercury 

tubes from 73 t o  85. 
t h e  l a r g e r  number of tubes.  

The NaK s h e l l  was enlarged propor t iona te ly  t o  accommodate 

4. The NaK PMA's operat ing a t  5800 rpm, l i k e  those  used i n  EGS-0, 

were requi red  fo r  t h i s  system. The loop pressure drops were t o o  high t o  j u s t i f y  

use of t h e  lower-speed pumps incorporated i n  EGS-2. 

6 1  
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5. The NaK loop piping 

(cont  . Report No. 3386 

w a s  enlarged from 2.0 t o  2 2 5  in .  

The results of  t h e  EGS-3 ana lys i s  are given i n  t h e  summary perform- 

The ne t  output power has been increased t o  60.1 kw a t  ance char t ,  Figure 39. 
an ove ra l l  e f f ic iency  of 10.0%. Eff ic iency  increased s l i g h t l y  over t h a t  f o r  

EGS-2 because parasEtic losses ,  though higher,  do not increase  i n  proportion 

t o  t h e  gross txrbine output.  Although t h e  system weight i s  increased over EGS-2, 

it i s  lower than t h a t  of t h e  base l ine  system, and s p e c i f i c  weight drops sharply 

t o  166 lb/kwe. 

portant ,  t h e  analysis  shows t h a t  t h e  output power of SNAP-8 can be near ly  

doubled by making a f e w  cautious improvements and by scaling-up c e r t a i n  com- 

ponents of t h e  base l ine  system. No change w a s  made i n  t h e  mercury PMA, t h e  L/C 

PMA, aqd t h e  NaK PMA's. The a l t e r n a t o r  a l s o  w a s  unchanged although, a t  85 kva, 

it i s  operat ing s l i g h t l y  above i t s  design r a t i n g  (83 kva). 

A de t a i l ed  weight table  i s  presented i n  Appendix B. Most i m -  

This system evaluates  add i t iona l  component and system improvements 

a t  40 kw oiitput power. 

t u rb ine  i n l e t  pressure %o 350 psia ,  r e f l e c t i n g  t h e  s ta te -poin t  ana lys i s  des- 

cr ibed i n  sez t ion  V,D, above. This change w a s  made t o  increase Rankine cycle  

e f f ic iency .  

s e rva t ive  C,harl the previously described systems. The + , a rbhe  e f f i c i ency  w a s  

pegged a t  61%, a s  compared t a  64.4% i n  EGS-1 and -2. This value r e f l e c t s  ar? 

adjustrner4t dawnward due t o  higher t u rb ine  i n l e t  pressure,  as described i n  

Appendix C, anu a fu t l i e r  cor rec t ion  based on a more cacitious estimate o f  t h e  

improvement r ea l i zab le  w i t h  t h e  design changes previously out l ined .  Other 

modificatioos character iz ing EGS-4 a r e  l i s t e d  i n  t h e  performance summary char t ,  

F i g c e  40. 

The most important f e a t u r e  of EGS-4 i s  an increase i n  

I n  one respec t  ( t h e  assumed tu rb ine  e f f i c i ency)  EGS-4 i s  more con- 

An examination 3f Figure 40 revea ls  t h a t  t h e  performance of EGS-4 
i s  somewhat b e t t e r  than t h a t  of EGS-2 desp i t e  a reduct ion i n  tu rb ine  e f f ic iency .  

Overal l  e f f ic iency  is  10.3$, compared t o  9.6% f o r  EGS-2, due p r inc ipa l ly  t o  the  

e f f e c t  of 'higher tu rb ine  i n l e t  pressure.  P a r a s i t i c  power i s  reduced about 0.7 
kw due t o  rernoval of the motor scavenger pump i n  the  mercury PMA. 

area and t o t a l  weigh% are lower because of  increased eff ic iency.  
weigh+, breakdown i s  given i n  Appendix B. 

Radiator 

A de t a i l ed  
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E.  EGS-5 

This system incorporates  a l l  of  t h e  mol i 

Report No. 3386 

i ca t ions  evaluated i n  t h e  

s tudy which were judged t o  be feas ib le .  

t he re fo re ,  i s  considered t o  approach the u l t ima te  p e r f o m n c e  p o t e n t i a l  of t h e  

SNAP-8 system a t  40 kw n e t  output.  

the following r e spec t s :  The tu rb ine  aerodynamic e f f i c i ency  was increased i n  t h e  

primary and hea t  r e j e c t i o n  NaK loops, and t h e  N a K  PMA's were s ized  t o  match re- 

duced loap  pressure  drop and flow ra t e s .  

The performance computed for EGS-5, 

Spec i f i ca l ly ,  EGS-5 d i f f e r s  from EGS-4 i n  

The tu rb ine  aerodynamic e f f i c i ency  was increased t o  62.5%. This 

value corresponds t o  t h e  64.4% used in  EGS-1 and -2 af ter  ad jus t ing  f o r  350 

p s i a  t u r b i n e  i n l e t  p ressure  (as described i n  Appendix C ) .  

b e t t e r  cornparison with t h e  e a r l i e r  systems is  obtained, and EGS-5 comes c l o s e r  

t o  represent ing  optimum  SNAP-^ performance. 

match t h e  flow r a t e  required f o r  t h i s  t u r b i n e  as determined by t h e  system 

ana lys i s  a t  an i n l e t  p ressure  of 350 ps ia .  

I n  this  manner, a 

Turbine flow a r e a  was assumed t o  

I n  order  t o  reduce the p a r a s i t i c  power required by t h e  NaK PMA's, 
t hese  components were "rubberized", i .e.,  sealed t o  match t h e  pressure drop and 

flow r a t e  required i n  each loop. Hydraulic impedance of  t h e  primary loop w a s  

g r e a t l y  reduced i n  EGS-4 by using the advanced r eac to r ,  a modified mercury 

b o i l e r ,  removing t h e  PLR from t h i s  loop, and increas ing  t h e  N a K  piping s i z e .  

Table 13 shows t h e  NaK aP allowances made f o r  t h e  PNL and HRL i n  EGS-5 as a 

f m c t i o n  of loop flow r a t e .  

as t h e  SNAP-8 development NaK PMA's. 

NaK PMA's custom designed for  t he  respect ive NaK loop AP and flow r a t e .  

The NaK PMA's are based on t h e  same design concept 

Figure 2 1  shows t h e  c h a r a c t e r i s i c s  of t h e  

The EGS-5 system described above w a s  then analyzed t o  determine 

component operat ing condi t ions and system performance. 

s u l t i n g  summary performance cha r t  f o r  t h i s  system based on a n e t  power output  

Of 40 b e .  

The o v e r a l l  e f f ic iency  of 10.9% represents  a 55% increase  over EGS-0. 

Figure 41 i s  t h e  r e -  

P a r a s i t i c  power i s  seen t o  be 10.7 kw, 9 kw lower than  t h a t  of EGS-0. 



V I  Performance of Improved Systems, X ( c o n t . )  Report No. 3386 

The weight f o r  t h i s  system i s  approximately 2300 l b  l i g h t e r  than 

EGS-0, and the r a d i a t o r  area i s  less than 900 sq f t .  The weight saving i s  l a r g e l y  

due t o  t h e  change i n  FCS s t r u c t u r a l  concept, use of weight-reduced components, and 

t h e  reduced r ad ia to r  s i z e .  

EGS-5. 

Appendix B gives t h e  d e t a i l e d  weight breakdown f o r  

F. EGS-6 

This system t akes  advantage o f  a l l  of t h e  improvements used i n  EGS-5. 

The system analysis  w a s  performed t o  establish t h e  maximum n e t  power output t h a t  

could be obtained with a 600-kwt r e a c t a r  input ,  and i n  t h a t  r e spec t  i s  comparable 

t o  EGS-3. The following paragraphs desc r ibe  t h e  design changes necessary t o  

accommodate t h e  higher loop flow rates which are t h e  consequence of 600 kw input .  

1. To reduce t h e  p a r a s i t i c  power required by t h e  N a K  PMA's used i n  

t h i s  EGS, t he  hydraulic impedance of both NaK loops w a s  reduced as much as poss- 

i b l e .  I n  t h e  primary NaK loop, t h e  b o i l e r  NaK tube s i z e ,  and t h e  N a K  pipe s i z e  

were increased.  I n  t h e  HRL, t h e  r a d i a t o r  N a K  tubes were increased by 0.030 

inches i n  diameter, t h e  NaK piping w a s  increased, and t h e  conrienser NaK flow area 

w a s  increased. These changes were calculated t o  give t h e  A€' values Lis ted  i n  

Table 13 a t  flow rates compatible with t h e  EGS-6 power l e v e l .  

N a K  PMk's were assmed t o  be custom designed t o  match t h e  loop pressure drop and 

flow rates required by the system. 

A s  i n  EGS-5, t h e  

2. The mercury b o i l e r  used i n  EGS-6 was increased i n  s i z e  t o  

meet t h e  increased NaK and mercury flows. The number of mercury tubes w a s  i n -  

creased from 7 t o  9 and t h e  NaK tube surrounding t h e s e  tubes w a s  increased t o  

4.55 i n  I D .  

p s i  at. 70,000 lb/hr flow rate. 

With t h e s e  changes, t h e  b o i l e r  NaK-side Ai? w a s  estimated t o  be 1.8 

3. The mercury condenser w a s  enlarged by inc reas ing  t h e  number of 

mercury tubes from 73 t o  85 and increasing t h e  N a K  flow area t o  reduce t h e  

NaK A€' i n  t h i s  component. 

basis of constant mercury flow-rate per tube.  The N a K  flow area w a s  increased 

t o  y i e l d  a pressure drop of 5 p s i  a t  50,000 l b / h r  flow rate. 

The s c a l i n g  of t h e  number of tubes w a s  made on t h e  

64 
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The r e s u l t s  of t h e  EGS-6 performance a n a l y s i s  are presented i n  

A ne t  e l e c t r i c a l  output o f  71.1 kwe i s  shown f o r  t h i s  system a t  a n  Figure 42. 
o v e r a l l  system ef f ic iency  of 11.9%. 
s l i g h t l y  exceeds t h e  design r a t i n g  of t h e  present SNAP-8 design. 

The a l t e r n a t o r  gross output of 86.1 kva 

The weight breakdown f o r  t h i s  system, given i n  Appendix B, shows 

t h a t  t h e  weight of t h i s  system i s  about 1000 lb l i g h t e r  than EGS-0. 

EGS-6 r a d i a t o r  area of 1440 sq f t  i s  only 7 sq f t  g r e a t e r  than t h a t  of EGS-0, 

while t h e  ne t  power output i s  35.1 kwe grea te r .  This demonstrates t he  advantages 

of t h e  modifications made t o  t h e  system as a r e s u l t  of t h i s  study. 

Also,  t h e  
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V I I .  INTEGRATION OF THE SNAP-8 EGS WITH A TV SATELLITE 
AN ILLUSTRATIVE APPLICATION STUDY 

A.  INTRODUCTION 

The performance of improved SNAP-8 power systems having been evalu- 

a ted ,  as described i n  the preceding sec t ions  of t h i s  repor t ,  it was of i n t e r e s t  

t o  study a t y p i c a l  app l i ca t ion  of  t h e  power system i n  an unmanned space mission. 

A direct-broadcast  TV s a t e l l i t e  i n  synchronous o r b i t  w a s  se lec ted  as the 

mission model, and the EGS-4 power system was chosen as t h e  improved power 

system model. 

study but  were taken from ava i l ab le  sources as c i t e d  herein.  Design and per-  

formance d a t a  for  the TV system and o r b i t a l  s ta t ion-keeping requirements were 

obtained primarily from Space-General Corporation, based on a study of  unmanned 

appl ica t ions  of SNAP-8 conducted under NASA Contract NASw-1069 (Reference 11). 

Supplemental information on antenna and t r ansmi t t e r  c h a r a c t e r i s t i c s  w a s  obtained 

from TRW Systems and from EIMAC Division of Varian. 

organizations is  g r a t e f u l l y  acknowledged. 

Mission and space vehicle  d a t a  were not  generated i n  t h e  present  

The a s s i s t ance  of these 

1. Scope 

The purpose of t h i s  study i s  t o  de f ine  and examine t h e  major 

power system/TV spacecraf t  i n t e r f aces  and t o  pro jec t  ove ra l l  c h a r a c t e r i s t i c s  of 

a conceptual vehicle design. 

developed t o  define t h e  vehic le  shape, component arrangement and weight 

d i s t r i b u t i o n ,  and t o  i d e n t i f y  major power system/payload in t e r f aces .  

f i gu ra t ion  selected i n  t h e  s tudy i s  based on use of a Saturn-class  launch 

vehicle  ( i .e . ,  one using an S-IVB upper s t age ) .  

optimize t h e  configuration, but simply t o  def ine  a f eas ib l e  arrangement. Thermal 

management of the power and TV systems were analyzed, i n t e r f a c e  problems 

iden t i f i ed ,  and c h a r a c t e r i s t i c s  of t h e  major spacecraf t  subsystems are discussed.  

I n  concluding the study, power system redundancy and increased power output were 

examined b r i e f ly .  

from 10,000 t o  20,000 hours a l s o  w a s  evaluated. 

For th i s  purpose, a conceptual design layout  w a s  

The con- 

The study does not  a i m  t o  

The po ten t i a l  fo r  increas ing  t h e  operat ing l i f e  of SNAP-8 

66 
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2. Application Study Guidelines 

The general  guidelines followed i n  developing t h e  i n i t i a l  

conceptual design are as follows: 

Saturn-class launch vehic le  with S-IVB upper s tage .  

Twenty-four hour equa to r i a l  o r b i t  (22,300 m i  a l t i t u d e )  

Unmanned vehicle 

10,000-hour continuous operat ing l i f e .  

No redundancy of power system or payload. 

35 kwe ne t  power t o  payload; 10 kw radiated by antenna. 

Antenna inside shield-cone. 

0.1 s a t e l l i t e  po in t ing  accuracy assumed. 0 

Radiation levels  i n  payload assumed the  same as cur ren t  

SNAP-8 417-1 Specif icat ion.  

3 .  Overall  S a t e l l i t e  Performance Summary 

The f indings of the s tudy ind ica t e  t h a t  i f  one i s  w i l l i n g  t o  

consider Saturn c l a s s  launch vehicles,  t h e  use of t h e  SNAP-8 kwe EGS (or probably 

any nuclear  power system) with a TV s a t e l l i t e  i s  f eas ib l e .  The study ind ica t e s  a 

t o t a l  s a t e l l i t e  launch weight of not more than l7,OOO pounds would be a t t a i n a b l e  

with a non-redundant power system. The ove ra l l  height  above the  SIVB-payload 

i n t e r f a c e  i s  reasonable compared w i t h  the  cur ren t  Apollo-LEM assembly and o ther  

pl-oposed nose-cone configurat ions.  However, it should be noted t h a t  t h e  impact 

of these  surfaces  and heights  on the  launch s i t u a t i o n  (aerodynamics, c .g . ,  e t c . )  

were not  analyzed. The launch weight exceeds t h e  capaci ty  of t he  cur ren t  Saturn 

I B  launch vehic le ,  but i s  wi th in  the  capab i l i t y  of var ious proposed upgraded I B  

vers ions.  If one of these  becomes avai lable ,  t h e  use of t h e  Saturn V vehic le  

would be required.  

a l t e r a t i o n  of present  TV sa t e l l i t e  concepts. 

o r b i t  i s  i l l u s t r a t e d  diagrammatically i n  Figure 43. 

Such an eventual i ty  would no doubt cause a considerable 

The satel l i te  vehic le  i n  e a r t h  

The general  configurat ion 



V I 1  In tegra t ion  of EGS with TV S a t e l l i t e ,  A ( con t . )  Report No. 3386 

I 
I 

of t h e  TV s a t e l l i t e  conceived here and i t s  r e l a t i o n s h i p  t o  t h e  Saturn V launch 

vehic le  i s  shown i n  Figure 44. 

The broadcast  a r ea  of t h e  TV s a t e l l i t e  could be extended 
This s i g n i f i c a n t l y  by increas ing  t h e  ava i l ab le  e l e c t r i c a l  power t o  70 kw. 

could be done by using Es-6, a s  descr ibed i n  t h e  preceding sec t ions  of t h i s  

r e p o r t .  

without redundancy. 

A weigh t  increase  of 3000 l b  would r e s u l t  from t h e  use of t h i s  system 

4. Conclusions 

a. SNAP-8 In t eg ra t ion  

The app l i ca t ion  of SNAP-8 t o  an unmanned d i r e c t -  

broadcast  TV s a t e l l i t e  i s  f e a s i b l e .  No extraordinary i n t e r f a c e  o r  i n t e g r a t i o n  

problems a r e  evident. 

thermal and rad ia t ion  environment assoc ia ted  with t h e  SNAP-8 system by thermal 

b a r r i e r s  and appropriate sh i e ld ing  t o  y i e l d  maximum r e l i a b i l i t y  and l i f e .  

Gyroscopic d is turb ing  fo rces  induced by r o t a t i n g  machinery and f l u i d  loops a r e  

r e a d i l y  counterbalanced by d i s c r e t e  component o r i en ta t ion  and pipe geometry t h a t  

impose no undue cons t r a in t  on t h e  power system. 

s a t e l l i t e  on t h e  launch vehic le  i s  reasonable.  

Payload equipment can be adequately pro tec ted  from t h e  

The o v e r a l l  height  of t h e  

b. R e l i a b i l i t y ,  Redundancy and Increased Life  

R e l i a b i l i t y  and l i f e  a r e  r e l a t e d  and important aspec ts  

of any SNAP-8 appl icat ion.  

t he  power system and/or t h e  TV system. 

crease associated with s e l e c t i v e  addi t ion  of redundant subsystems can be 

r e l a t i v e l y  small and w e l l  wi th in  t h e  Saturn V payload capab i l i t y .  

t o  provide one redundant PCS and k lys t ron  t r ansmi t t e r  would increase  t h e  bas i c  

vehic le  weight from 17,000 t o  22,000 l b .  

s a t e l l i t e  t o  20,000 hours r equ i r e s  t he  add i t ion  of approximately 2000 l b  f o r  t h e  

r eac t ive  t h r u s t  system, increas ing  gross  vehic le  weight t o  24,000 l b .  

of redundancy ( i . e . ,  whether a c t i v e  or standby) i s  a t o p i c  r equ i r ing  f u r t h e r  

study. 

Both could be enhanced by employing redundancy of 

The study shows that t h e  weight i n -  

For example, 

To extend opera t iona l  l i f e  of t h e  

The mode 
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c.  Increase i n  Power Rating 

The study shows t h a t  an inc rease  i n  power r a t i n g  would 

be d e s i r a b l e  t o  inc rease  TV coverage area of t h e  veh ic l e .  

mately proport ional  t o  r ad ia t ed  beam power. 

by up ra t ing  SNAP-8 from 35 t o  70 k w  (using ~ s - 6  insteady of EGS-4), or by using 

mult iple  SNAP-8 systems operating i n  p a r a l l e l .  The present  payload c a p a b i l i t y  

of Saturn V permits t h e  use of multiple SNAP-8 systems f o r  t h i s  purpose within 

t h e  height  and r a d i a t o r  surface l imi t a t ions  of t h e  launch ven ic l e .  

Coverage i s  approxi- 

The beam power could be increased 

d. Balancing of PCS Gyroscopic Moments 

The study shows t h a t  t h e  angular momentum of t h e  r o t a t i n g  

components and f l u i d s  of t h e  PCS can be balanced so as t o  produce v i r tua l ly  zero 

n e t  u r o s c o p i c  moment on t h e  vehicle  without undue cons t r a in t  on t h e  power system. 

B. VEHICLE CONCEPTUAL DESIGN 

1. Configuration and Location of Subsystems 

Preliminary layouts of several veh ic l e  arrangements were 

evaluated which covered t h e  following t r a d e o f f s :  f o r e  and a f t  l o c a t i o n  of t h e  

r e a c t o r  ar,d sh ie ld ,  r e t r a c t a b l e  and f ixed  antenna, and length of veh ic l e  v s  

cone angle .  A f t e r  consideration of these a l t e r n a t i v e s ,  t h e  configurat ion and 

arrangement shown i n  Figure 44 w a s  se lec ted .  

chosen t o  be compatible with the  S-IVB s tage ,  based on information contained i n  

Reference 12, "The Saturn V Payload Planner 's  Guide. This length i s  only a 

l i t t l e  g r e a t e r  than t h e  Apollo-LEM length of 53 f t  and, when mounted on t h e  

Saturn V launch vehicle ,  i s  we l l  be low t h e  height l i m i t  of t h e  launch tower. 

The 34-ft diameter antenna i s  located as far  from t h e  r e a c t o r  and s h i e l d  as  i s  

f e a s i b l e  s o  as t o  minimize t h e  sh i e ld  cone angle  while keeping t h e  antenna wi th in  

t h e  shadow of t h e  s h i e l d .  

The reason for sh ie ld ing  the antenna i s  t o  p ro tec t  t h e  s o l i d - s t a t e  e l e c t r o n i c  

components, located j u s t  forward of the  antenna, from s c a t t e r e d  r a d i a t i o n .  A 

An o v e r a l l  l eng th  of 59.3 f t  w a s  

The r e s u l t a n t  cone angle  o f  35' w a s  thereby e s t ab l i shed .  

detailed a n a l y s i s  of r a d i a t i o n  dose levels might show t h a t  sh i e ld ing  of t h e  

antenna i s  unnecessary. I n  t h a t  event, t h e  shield weight could be reduced, 

saving perhaps a few hundred pounds. 
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The r a d i a t o r s  f o r  r e j e c t i n g  heat  from SNAP-8, and t h e  TV system 

form t h e  vehicle outer  s t r u c t u r a l  s h e l l .  

occupies the  conical  surface of t he  veh ic l e .  

r a d i a t o r  are mounted on t h e  c y l i n d r i c a l  sur face  of t h e  vehic le .  

ment of t h e  r ad ia to r s  minimizes thermal management problems by separa t ing  t h e  

high-temperature r a d i a t o r  and PCS components from t h e  lower temperature L/C and 

TV r a d i a t o r  and t h e  TV e l e c t r i c a l  components. A j e t t i s o n a b l e  adapter  s t r u c t u r e  

i s  required a t  the  a f t  end of t h e  vehic le  t o  connect t he  r a d i a t o r  assembly with 

t h e  S-IVB stage.  In  addi t ion ,  j e t t i s o n a b l e  shrouds must be provided over t h e  

r eac to r  and sh ie ld  t o  pro tec t  them during launch, and over t h e  r a d i a t o r s  t o  

prevent f reezing of heat  t r a n s f e r  f l u i d s  during i n j e c t i o n  i n t o  o r b i t .  Addi t ional  

f ea tu re s  of the  configurat ion and general  arrangement a r e  shown i n  t h e  conceptual 

design layout ,  Figure 45, and a r e  discussed below. 

The high-temperature (HRL) r a d i a t o r  

The SNAP-8 L/C r a d i a t o r  and t h e  TV 

This arrange-  

a.  A co l l aps ib l e  parabol ic  antenna with an extended diameter 

of 34 f t  i s  shown i n  t he  conceptual design. 

a representat ive s i z e  compatible with 10-kw of r ad ia t ed  power, a 2 beam width 

and good qua l i ty  d i r e c t  TV recept ion on one channel. The antenna i s  provided 

with p e t a l s  which w i l l  f o l d  within t h e  21-f t  diameter vehicle  envelope during 

launch. The surrounding s t r u c t u r e  i s  j e t t i s o n e d  a t  t h e  pa r t ing  sur faces  shown, 

t o  permit deployment of t h e  folded antenna. 

The 34-ft diameter was est imated as 
0 

b. A l l  TV systems and e l e c t r o n i c  components a r e  loca ted  i n  

proximity t o  the t r ansmi t t i ng  antenna t o  minimize power lo s ses  and provide 

lowest r ad ia t ion  and temperature environment. 

c. The s t a t i o n  keeping and a t t i t u d e  con t ro l  propel lan t  

tanks have been c e n t r a l l y  loca ted  and a s  near  t o  t he  center  of mass as f e a s i b l e .  

The twelve a t t t i t u d e  con t ro l  t h r u s t e r s  a r e  shown mounted outs ide  t h e  r a d i a t o r  

s h e l l  on a 24-ft  diameter.  

they  w i l l  t h r u s t  through the  center  of mass. The center  of mass v a r i e s  a 

negl ig ib le  amount as propel lan t  i s  consumed by the  r eac t ive  t h r u s t  system. 

Four s t a t i o n  keeping t h r u s t e r s  a r e  loca ted  s o  t h a t  

d. The SNAP-8 PCS components a r e  loca ted  within t h e  forward 

A thermal b a r r i e r  conica l  sec t ion  and p a r t i a l l y  surrounded by t h e  HFG r a d i a t o r .  

i s o l a t e s  t he  HRL from other  systems as shown i n  t h e  conceptual design. 
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e. A t o t a l  surface a rea  of 840 sq f t  i n  the  conical  sec t ion  

and 1050 sq  f t  i n  t h e  c y l i n d r i c a l  sect ion i s  a v a i l a b l e  as r a d i a t o r  surface.  

This amounts t o  643 sq ft more than  the estimated r a d i a t o r  a rea  requirements. 

The vehicle  surface i s  determined by the  cone angle and length  which were 

s e l e c t e d  on t h e  bas i s  of payload r a d i a t i o n  dose c r i t e r i a .  

arrangement shown, an a d d i t i o n a l  volume of a t  l e a s t  5000 cu f t  is  a v a i l a b l e  for 

a d d i t i o n a l  payload. 

With t h e  component 

f. The system tube-and-fin r ad ia to r s  a r e  u t i l i z e d  as t h e  

main vehic le  s t ruc ture ;  c i rcumferent ia l  "Z" r ings and longi tudina l  streamers 

provide s t i f f e n i n g  of t h e  r a d i a t o r s  against  buckling. The s t ruc tu re  needed t o  

support t h e  TV system u t i l i z e s  t h e  s t r u c t u r a l  r i n g  at  t h e  base of t h e  c y l i n d r i c a l  

r a d i a t o r  s h e l l .  S t r u c t u r a l  support a l so  i s  provided f o r  propel lant  tankage i n  

t h e  c m i c a l  sec t ion  of t h e  vehicle .  A 260-in. diameter j e t t i s o n a b l e  s t ruc tu re  

adapts t h e  vehicle  r a d i a t o r  s t ruc tu re  t o  the  S-IVB s tage .  This sec t ion  of 

s t r u c t u r e  surrounds t h e  collapsed antenna and i s  j e t t i s o n e d  upon separat ion 

from t h e  S-IVB stage.  

2. I n t e r f a c e s  and In tegra t ion  Features 

In tegra t ion  of  SNAP-8 with other  systems of an unmanned TV 
s a t e l l i t e  was invest igated t o  iden t i fy  major considerations necessary i n  evolving 

t h e  conceptual design of a vehicle .  It i s  not t h e  i n t e n t  of t h i s  study t o  r e -  

solve a l l  in t e r f ace  problems, r a t h e r  t o  i d e n t i e  those  of major importance, i n -  

d i s a t e  t h e i r  influence on system design and performance, and suggest po ten t i a l  

areas for fu r the r  study. 

a. Thermal Environment 

The high-temperature environment associated with SNAP-8 

c rea t e s  t h e  necess i ty  t o  thermally i s o l a t e  e l ec t ron ic  equipment, power condition- 

ing  equipment, low-temperature coolants (such as water and L/C f l u i d ) ,  as w e l l  

as a t t i t u d e  cont ro l  propel lant ,  from t h e  high temperatures of t he  SNAP-8 system. 

This i s  accomplished by providing a thermal b a r r i e r  between t h e  HRL r a d i a t o r  and 

t h e  L/C rad ia tor ,  and i n s t a l l i n g  a l l  of the  major SNAP-8 hardware i n  t h e  farward 
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conica l  sec t ion  as shown i n  Figure 45. 
t o  t he  L/C and TV r a d i a t o r s  i s  minimized. Further,  a l l  o ther  components except 

t h e  L/C c i r c u i t ,  a r e  loca ted  on t h e  payload s i d e  of t he  thermal b a r r i e r  so t h a t  

they a r e  not adversely a f f e c t e d  by high-temperature r a d i a t o r  sur faces .  Thermal 

i n s u l a t i o n  i s  employed on SNAP-8 components t h a t  operate  a t  temperatures s i g n i f i -  

c a n t l y  d i f f e r e n t  from the  HRL r ad ia to r .  

Thus, interchange of heat  from t h e  HRL 

To withstand t h e  low-temperature environment which w i l l  

e x i s t  f o r  severa l  days during o r b i t a l  t r a n s f e r  maneuvers, t h e  veh ic l e  i s  pro- 

vided with a l ight-weight j e t t i s o n a b l e  shroud. I n  addi t ion ,  p ropel lan t  and 

coolant tanks are insu la t ed  t o  prevent f r eez ing .  

Rejection of waste heat  from t h e  TV power condi t ioning,  

rece iv ing  and t ransmi t t ing  equipment i s  accomplished by a cool ing c i r c u i t ,  i n -  

dependent of the  SNAP-8 cool ing loops.  

coolant,  and includes a separa te  motor-driven pump and r a d i a t o r .  

assumed t h a t  of t he  35 kwe supplied,  25 kw w i l l  be r e j e c t e d  t o  space by t h e  water 

cooling loop. 

subsystem i s  not t h i s  e f f i c i e n t ,  t h i s  cooling load would be higher .  

a f f e c t  t he  s i z e  of t he  cool ing system and the  amount of pumping power required,  but  

The TV cool ing c i r c u i t  uses water as 

It has been 

This implies  a c e r t a i n  e f f i c i e n c y  of t h e  TV subsystem. If t h e  TV 

This w i l l  

I 
I 
I 
I 
I 
I 
I 
1 
I 
1 
I w i l l  not a f f e c t  t h e  o v e r a l l  i n t e g r a t i o n  problem being s tudied .  The TV heat  r e j e c t i o n  

requirements and c h a r a c t e r i s t i c s  a r e  discussed i n  paragraph C,2,b. 

b .  Radiation Environment 

The TV equipment and t h e  LCS a r e  loca ted  i n  t h e  a f t  end 

of t h e  vehic le  where the  t o t a l  i n t eg ra t ed  r a d i a t i o n  dose f o r  10,000 hours i s :  

Fast  neutrons nvt  

Gammas 10 r ads  

These r ad ia t ion  l e v e l s  are those e s t ab l i shed  f o r  t h e  

6 

SNAP-8 e l e c t r i c a l  components as s e t  f o r t h  i n  Reference 13. 
these  l e v e l s  f o r  o ther  equipment i n  the  veh ic l e  w a s  not evaluated.  

s h i e l d  i s  s ized  t o  l i m i t  t he  r ad ia t ion  dose t o  the  l e v e l s  i nd ica t ed  a t  t h e  

separa t ion  d is tance  defined by t h e  veh ic l e  configurat ion.  

unfolded during operat ion,  l i e s  wi th in  the  shadow of t h e  s h i e l d  i n  order  t o  

prevent r ad ia t ion  s c a t t e r  which would increase  t h e  dose received by t h e  e l e c t r o n i c  

e qui pme n t  . 

The s u i t a b i l i t y  of 

The r a d i a t i o n  

The TV antenna, when 
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If t h e  above-noted r a d i a t i o n  l e v e l s  prove t o  be excessive,  

they  can be reduced by increasing sh ie ld  th ickness  a t  t h e  expense of a d d i t i o n a l  

weight. 

r ad ia t ion ,  of  one order  of magnitude would r equ i r e  approximately 1000 l b  of 

a d d i t i o n a l  s h i e l d  weight. A reduction i n  dose of two orders  of magnitude 

would r equ i r e  an a d d i t i o n a l  4000 l b  o f  s h i e l d  weight.  

A reduct ion i n  dose at  t h e  payload, i n  both  neutrons and gamma 

3. Weight Estimate 

The weight estimate f o r  the power system w a s  taken from t h e  

weights developed f o r  EGS-4. 

sh i e ld  cone angle  and f o r  reduced r ad ia to r  a rea .  The la t te r  r e s u l t s  from 

opera t ion  o f  t h e  r a d i a t o r s  i n  syrichronous o r b i t  wi th  a t t endan t  reduct ion i n  t h e  

inc iden t  thermal r ad ia t ion  from t h e  ear th .  The weight es t imates  f o r  t h e  TV 

system were obtained from t h e  sources previously c i t ed ,  i n  p a r t i c u l a r ,  Reference 

11. 

descr ibed i n  paragraph C 9 3  below. The gross  launch weight of t he  vehic le  w a s  

es t imated a t  17,000 l b  for a nonredundant 35-kw power system and a 10,000-hour 

a t t i t u d e  con t ro l  system. Af t e r  j e t t i son ing  s t r u c t u r e  and shrouds, t h e  f l i g h t  

weight of t h e  vehic le  i s  a l i t t l e  l e s s  than  15,000 l b .  

down f o r  t h e  vehic le  i s  presented i n  Table 18. 

Those weights were ad jus ted  for t h e  increased 

The weights for t h e  a t t i t u d e  control  system were generated i n  t h e  s tudy as 

A summary weight break- 

O f  launch vehicles  now being developed, only Saturn V has the  

c a p a b i l i t y  of placing t h i s  vehic le  i n  synchronous o r b i t .  The Saturn V payload 

c a p a b i l i t y  i n  synchronous o r b i t  i s  estimated t o  be 62,000 l b .  

a v a i l a b l e  booster ,  Saturn I B ,  has a c a p a b i l i t y  of only about 8000 l b .  

The next  l a r g e s t  

If other  launch vehicles,  such as t h e  Sa turn  I B ,  were up- 

graded t o  increase  payload capabi l i ty ,  s a t e l l i t e  launch weight may become a 

s i g n i f i c a n t  cons t r a in t .  

f o r  reducing launch weight by de ta i led  weight opt imizat ion s tud ie s .  

a few examples: 

If t h i s  were t h e  case,  t h e r e  are seve ra l  p o s s i b i l i t i e s  

To mention 

a. A low-freezing-point hea t  r e j e c t i o n  f l u i d ,  such as 

sodium-potassium-cesium a l l o y  might permit e l imina t ion  of t h e  shroud over t h e  

r a d i a t o r s .  
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b. Shield weight might be reduced by reducing t h e  shadow 

cone angle i f  analysis  showed r a d i a t i o n  s c a t t e r  fran the antenna t o  be n e g l i -  

g i b l e .  

c. Radiator weight could be reduced by increasing r a d i a t o r  

area as indicated i n  Sect ion III,C,3 of t h i s  repor t .  

d. The reac t ion  cont ro l  system weight might be optimized 

by s e l e c t i n g  higher performance propel lan ts  or by allowing t h e  vehic le  t o  d r i f t  

out-of-plane and compensating f o r  t h e  d r i f t  by a t t i t u d e  cont ro l  cor rec t ions .  

(At t i tude  control  adjustments genera l ly  requi re  less propel lant  than s t a t i o n -  

keeping maneuvers. ) 

Optimization s tud ie s  l i k e  t h e s e  are beyond t h e  scope of  t h e  

present  study, b u t  t he re  i s  no question t h a t  s i g n i f i c a n t  weight savings could 

be r e a l i z e d  i f  launch weight were t h e  major c r i t e r i o n  f o r  vehic le  design for a 

p a r t i c u l a r  mission. 

C . SUBSYSTEM CHARACTERISTICS 

1.  SNAP-^ EGS 

The power system performance c h a r a c t e r i s t i c s  used i n  t h e  

vehic le  in tegra t ion  study were taken from t h e  d a t a  f o r  EGS-4 which a r e  presented 

i n  Sect ion VI,D of t h i s  repor t .  

requirements of t h e  SNAP-8 development program as s e t  f o r t h  i n  Reference 13. O f  

primary concern i n  t h e  appl ica t ion  study a r e  t h e  power r a t ings  of 35 kwe output;  

120/208 vol t s ,  ac, a t  400 cps; and 0.85 power f ac to r  a t  t h e  payload. Radiator 

a reas  have been adjusted downward t o  account f o r  t h e  very low inc ident  thermal 

r a d i a t i o n  from ea r th  i n  a 22,300 m i l e  o r b i t .  

Power output r a t ings  of EGS-4 conform t o  t h e  

Weight of t h e  power system w a s  

rev ised  t o  account 

SNAP-8 performance 

are given i n  Table 

f o r  a l a r g e r  sh ie ld ,  and lower r a d i a t o r  areas. A summary of 

and s p e c i f i c a t i o n  d a t a  appl icable  t o  t h e  TV vehic le  study 

19. 
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2. TV Subsystem 

a. Transmitter and Receiver 

Charac te r i s t ic  design and performance da ta  f o r  t he  TV 

system was taken from t h e  study performed by Space-General Corporation (Ref- 

erence 11). This source information ind ica ted  t h a t  with 35 kw ava i l ab le  power 

a parabol ic  antenna of approximately 34 f t  i n  diameter w a s  required t o  provide 

good q u a l i t y  d i r e c t  TV recept ion on one channel over an a rea  of up t o  one-half 

mi l l ion  square miles.  Hence, t h i s  antenna s i z e  w a s  taken as s u f f i c i e n t l y  

representa t ive  f o r  t h e  purposes of  t h i s  study. An antenna t h i s  s i z e  must be 

co l l aps ib l e  t o  f i t  within the  vehicle envelope-during launch. 

feet  of rad ius  of t h e  antenna i s  made up of p e t a l s  which can f o l d  upon each 

other  i n  a manner similar t o  the  photoflash r e f l e c t o r  of some cameras. Devices 

of t h i s  type have been b u i l t  and t e s t ed  up t o  32 f t  i n  diameter f o r  s o l a r  

co l l ec to r s .  

The outer  seven 

For t h i s  study, use of a magnetically-focused k lys t ron  

t ransmi t te r -ampl i f ie r  w a s  assumed. Typically, t h i s  type of t r ansmi t t e r ,  r a t ed  

a t  10 kw rf output would weigh about 280 lb ,  would have an e f f i c i ency  of 3376, 
and would requi re  a c t i v e  cooling t o  car ry  o f f  waste hea t .  

system f o r  t h e  k lys t ron  w a s  assumed. 

A water cooling 

Design and se lec t ion  of t h e  TV receiver ,  rece iver  antenna 

and assoc ia ted  equipment, appear t o  f a l l  w e l l  wi th in  present  s ta te -of - the-ar t  

hardware and presents  no s ign i f i can t  problems. For t h i s  reason, t h e  s p e c i f i c  

d e t a i l s  of t h e  rece iver  c i r c u i t r y  have not been inves t iga ted .  

antenna as shown i n  Figure 45 i s  mounted on t h e  parabol ic  r e f l e c t o r  of t h e  

t r ansmi t t i ng  antenna t o  permit full view of e a r t h  t ransmi t t ing  s t a t i o n s  over 

a wide area outs ide of t h e  TV broadcast area. 

The receiving 

b.  Power Conditioning and Heat Rejection 

Typical d i s t r i b u t i o n  of t h e  power suppl ied t o  the  TV 

system i s  shown i n  Figure 46. 
formed t o  12,500 v o l t s  f o r  t h e  beam c i r c u i t  of t h e  k lys t ron  t r ansmi t t e r .  

Approximately 83 percent of t h e  35 kw i s  t r ans -  

In  
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addi t ion ,  t h e  klystron r equ i r e s  33 v o l t  dc power f o r  the  focusing magnet and 

5.5 v o l t  a c  power f o r  t he  cathode hea ter .  

condi t ioning system showing a suggested c i r c u i t r y  f o r  t h e  high-voltage con- 

vers ion  i s  shown i n  Figure 47. 
condi t ioning system w a s  e s t ab l i shed  a t  87 per cent ,  based on ind iv idua l  

component e f f i c i e n c i e s  shown i n  Figure 47. 

A diagram of a t y p i c a l  power 

Overall e f f i c i e n c y  of t h e  high-voltage power 

It w a s  necessary t o  examine t h e  requirements f o r  cool- 

ing  the TV system i n  order t o  evaluate  poss ib le  i n t e r f a c e s  w i t h  t he  power system 

and t o  complete t h e  conceptual design of t h e  vehic le .  O f  t he  35 kw suppl ied by 

the  SNAP-8 M;S, about TO$ must be r e j e c t e d  t o  space. 

a r e  the power conditioner and t h e  k lys t ron  t r ansmi t t e r .  

operates  wi th  an e f f i c i ency  of 87% on v i r t u a l l y  a l l  of t he  35 kw supplied; t h i s  

means t h a t  l3$ o f  the power, or 4.5 kw must be removed by a cool ing c i r c u i t  a t  

temperatures not exceeding 200 F. The k lys t ron  tube rece ives  29.8 k w  from the 

power conditioner and operates  a t  an est imated e f f i c i ency  of 33%; the re fo re ,  

it must be cooled a t  the  rate of 19.8 kw. 

can s tand somewhat higher temperatures than t h e  s o l i d - s t a t e  e l e c t r o n i c  components. 

For t h i s  study, a maximum coolant temperature of 270 F f o r  t h e  k lys t ron  tube was 

used a f t e r  checking with var ious sources of information. 

payload equipment shown i n  the  block diagram, Figure 46, r equ i r e s  cooling of 

approximately 400 watts a t  a maximum temperature of 200 F. 

The major cooling loads 

The power condi t ioner  

0 

Indica t ions  a r e  that t h e  k lys t ron  tube 

0 

The remainder of t h e  

0 

Various a l t e r n a t i v e  schemes f o r  cooling t h e  TV system 

were b r i e f l y  considered, such as in t eg ra t ion  w i t h  t h e  SNAP-8 L/C loop, and 

passive cooling of some of t h e  smaller  components. In  t h e  end, no s i g n i f i c a n t  

advantage i n  r ad ia to r  a rea  or i n  pumping power could be found i n  these  a l t e r -  

na t ives  over a separate  a c t i v e  cooling c i r c u i t  f o r  t h e  TV system. 

convenient, however, t o  cool  the SNAP-8 low-temperature c o n t r o l  assembly (LCA) 

by means of the TV cooling c i r c u i t ,  s ince  t h e  environmental requirements and the 

environmental requirements and loca t ions  of t h e  LCA a r e  near ly  i d e n t i c a l  t o  those  

It w a s  

of the  payload components. 
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The TV system cooling c i r c u i t ,  shown schematically i n  

Figure 48, uses water as the coolant and has a sepa ra t e  motor-driven pump. 

Se lec t ion  of water as t h e  coolant was pr imari ly  based on a v a i l a b l e  information 

on the  k lys t ron  t r ansmi t t e r ,  which indicated t h a t  water i s  compatible where 

o the r  f l u i d s  may or may not  be. Operation of t h e  k lys t ron  a t  temperatures 

higher than t h e  other  e l e c t r o n i c  systems permits some reduct ion i n  o v e r a l l  

r a d i a t o r  area. To take advantage of th is ,  parallel r a d i a t o r  c i r c u i t s  are used 

as shown i n  the  diagram. The t o t a l  r a d i a t o r  a r e a  required f o r  the  water loop 

i s  370 sq f t .  

3 *  S t a t i o n  Keeping and A t t i t u d e  Control 

a. General Requirements 

S t a t i o n  keeping and a t t i t u d e  c o n t r o l  requirements were 

based on t h e  Space-General Corporation r epor t ,  Reference 11. Trans l a t iona l  

co r rec t ions  o f  t h e  vehicle  are necessary t o  compensate f o r  i n j e c t i o n  e r r o r s  and 

sun-moon g r a v i t a t i o n a l  e f f e c t s .  The l a r g e s t  f a c t o r  t o  be accounted f o r  i s  an 

out-of-plane co r rec t ion  based on a 1°/yr i n c l i n a t i o n  due t o  the sun-moon 

g r a v i t a t i o n a l  e f f e c t s .  

be required f o r  s t a t i o n  keeping f o r  10,000 hours. 

A value o f  240,000 lb-sec t o t a l  impulse w a s  estimated t o  

Concerning a t t i t u d e  control ,  t he  use of g rav i ty -  

gradient  torque t o  maintain o r i en ta t ion  with t h e  earth was considered. This 

method has been success fu l ly  employed f o r  some satel l i tes ;  e.g. ,  MIDAS. It w a s  

ca l cu la t ed  t h a t  f o r  a 15,000 l b  vehicle, 50-ft  long, i n  a synchronous o r b i t ,  the  

gravi ty-gradient  torques r e s u l t i n g  from a 0 .1  degree misalignment i s  about 

f t - l b ;  t h i s  magnitude i s  i n s i g n i f i c a n t ,  I n  Reference 11, it w a s  concluded t h a t  

t o  maintain t h e  veh ic l e  completely immobile with r e spec t  t o  the earth would be 

imprac t i ca l .  The a t t i t u d e  of t h e  vehicle can be con t ro l l ed  by applying 

c o r r e c t i v e  t h r u s t  i n  any of  3 axes whenever t h e  veh ic l e  reaches the allowable 

l i m i t  of a t t i t u d e  e r r o r .  I n  this  manner, the t h r u s t  fo rces  appl ied i n  sho r t  

b u r s t s  produce control led o s c i l l a t i o n  o f  t h e  sa te l l i t e .  The t o t a l  impulse re- 

quired f o r  a t t i t u d e  c o n t r o l  w a s  estimated a t  8600 lb-sec based on vehicle  
moments of i n e r t i a  of 9 x l o 4  lb-see- f t2  about the la teral  a x i s  and 9 x 10 3 

about t h e  long i tud ina l  a x i s .  
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a monopropellant 

hydrazine ( N2H4 ) 
follows : 

b. Se lec t ion  of  Thrust  System and Propel lan t  

A f t e r  var ious propulsion devices were examined b r i e f l y ,  

I hydrazine system w a s  s e l ec t ed  f o r  use i n  th i s  s tudy.  The 

requirements f o r  10,000 hours of operat ion were est imated as 

T o t a l  Impulse Propel lan t  Weight 
( l b - s e c )  ( l b )  

S t a t i o n  Keeping 240,000 
At t i t ude  Control 8,600 

1100 
39 

A twelve- thrus te r  a t t i t u d e  con t ro l  system and a four -  

t h r u s t e r  s t a t i o n  keeping system a r e  shown schematical ly  i n  Figure 49. 
a t t i t u d e  control  t h r u s t e r s  opera te  i n  p a i r s  on a 24- f t  diameter t o  apply a t u r n -  

ing  moment t o  the  vehic le .  

opera te  f o r  0.02 sec every 20 minutes t o  maintain the vehic le  wi th in  0.1 degree 

o f  t h e  nominal a t t i t u d e .  The four  s ta t ion-keeping t h r u s t e r s  impart t r a n s -  

l a t i o n a l  motion t o  t h e  veh ic l e  and, t he re fo re ,  must t h r u s t  through t h e  veh ic l e  

cen te r  of mass. These t h r u s t e r s  produce a 20-lb t h r u s t  force  t o  impart 

ve loc i ty  changes t o  co r rec t  "in-plane" and "out-of -plane" d r i f t .  

da t a  fo r  t h e  reac t ive  t h r u s t  system are summarized i n  Table 20. 

The 

Each t h r u s t e r  produces 0.5 l b  t h r u s t  and must 

Typical design 

P r i o r  t o  s e l e c t i n g  monopropellant hydrazine f o r  t h e  

r e a c t i v e  t h r u s t  system, a number of o the r  chemical and heated-gas systems were 

considered. N H 

system but  w a s  chosen because it i s  simpler and presumably more r e l i a b l e .  

was about 400 l b  heavier  than  a b i -propel lan t  N204 - N2H4 2 4  

Other types of propuls ion systems a l s o  were examined 

b r i e f l y .  Plasma, a r c  j e t  and r e s i s t o j e t  t h r u s t e r s  a r e  a t t r a c t i v e  i n  t h a t  they  

opera te  a t  higher s p e c i f i c  impulse. However, f o r  good performance they  must 

opera te  a t  temperatures above 3500°F and r e q u i r e  s to rage  of hydrogen or other  

cryogenic f lu ids .  Because of t he  r e l i a b i l i t y  impl ica t ions  of high-temperature 

operat ion and cryogenic s torage,  t hese  propuls ion methods were discarded i n  the 

cur ren t  study. 



I 
1 
I 

V I 1  In t eg ra t ion  of EGS with TV S a t e l l i t e ,  c (cant.) Report No. 3386 

C.  I n t e r n a l  and Externa l  Disturbances 

I n t e r n a l  and e x t e r n a l  dis turbances may cause s a t e l l i t e  

d r i f t  or r o t a t i o n .  One possible  source of  d i s turbance  i s  t h e  angular  momentum 

of t h e  SNAP-8 r o t a t i n g  machinery and f l u i d s .  

t ending  t o  produce a d i s tu rb ing  torque on the veh ic l e  i s  t h e  TAA which has an 

angular  momentum of 89 f t - lb-sec.  

d i s t u r b i n g  torque of  0.0065 f't-lb on t h e  veh ic l e  as a r e s u l t  o f  precession a t  

t h e  r a t e  of 1 revolu t ion  every 24 hours. 

r o t a t e  0.1 degree i n  approximately 4.5 minutes. 

p rope l lan t  N2H4, operat ing continuously, would be  required t o  compensate f o r  

t h i s  torque .  The p o s s i b i l i t y  of countering t h i s  e f f e c t  was examined. 

The l a r g e s t  s i n g l e  component 

T h i s  angular momentum w i l l  produce a 

This  moment w i l l  cause t h e  veh ic l e  t o  

Approximately 100 l b  o f  mono- 

The angular  momentum of a l l  other  r o t a t i n g  components 

and t h e  b o i l e r  were estimated as follows: 

PN PMA 2.9 

HR PMA 2.9 

MPMA 2.1 

L/C PMA 0.2 

Boi le r  7.7 
Tota l  15.8 f t - l b - sec  

I n  t h e  conceptual design layout ,  Figure 45, these 

components and t h e  TAA were mounted with t h e i r  a x i s  of r o t a t i o n  p a r a l l e l  t o  t h e  

l o n g i t u d i n a l  a x i s  of t h e  vehic le  i n  such a way as t o  counteract  t h e  angular 

moment of t h e  TAA. A ne t  unbalanced angular  momentum of 73 f t - lb - sec  r e s u l t e d .  

It was determined t h a t  t h i s  unbalanced fo rce  could be n u l l i f i e d  by rou t ing  t h e  

primary NaK piping through two 9-ft diameter t u rns .  

o t h e r  f l u i d  loops i s  e a s i l y  balanced without undue cons t r a in t  on pipe rout ing .  

The angular  momentum of  

The unbalanced torques produced during s t a r t u p  of  SNAP-8 

a l s o  were examined. A s  the worst case, t h e  dis turbances caused by acce le ra t ion  

o f  the TAA during s t a r t i n g  with no counter-balancing forces  w a s  determined. 
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This dis turbing torque w a s  found t o  cause an angular v e l o c i t y  of the  vehic le  

of 0 .1  rpm which requi res  a negl ig ib le  amount of propel lant  f o r  cor rec t ion  of 

vehicle  posi t ion.  

Micrometeoroid impingement disturbances on the  vehic le  

a l s o  were e s t i m t e d .  

designed t o  protect  against ,  a momentum of 5.8 x lb-sec was ca lcu la ted .  

This requi res  an equal t h r u s t  impulse t o  counteract,  and i s  seen t o  be negl i -  

g ib l e .  A r e l a t i v e l y  la rge  meteoroid of t e n  grams mass would have a momentum 

of 45 lb-sec.  This would require  about 0.2 ob of propel lant  t o  counteract.  

Considering the  l a r g e s t  p a r t i c l e  which r a d i a t o r  armor i s  

D. POWER INCREASE AND REDUNDANCY 

Since the  Saturn V booster has t h e  c a p a b i l i t y  of l i f t i n g  much more 

than 17,000 lb ,  it i s  of i n t e r e s t  t o  examine t h e  advantage t h a t  increased 

launch weight might o f f e r  i n  vehicle  performance, l i f e ,  and r e l i a b i l i t y .  

Vehicle performnce ( i . e . ,  broadcast a rea  and q u a l i t y )  could be enhanced by 

increas ing  avai lable  power. SNAP-8 power output can be e s s e n t i a l l y  doubled 

by using EGS-6 ins tead  of EGS-4, with a r e l a t i v e l y  small weight increase.  

Redundancy can be used t o  increase r e l i a b i l i t y ,  or l i f e  (or both, i f  more 

than one redundant system i s  employed). 

of the  SNAP-8 FGS i s  discussed i n  paragraph E, below. Table 21 summarizes 

the  e f f e c t  of power increase and redundancy on vehic le  s i ze ,  weight, and 

performance. In  general ,  t he  t ab le  i n d i c a t e s  t h a t  a la rge  p o t e n t i a l  f o r  

growth e x i s t s  within t h e  capabi l i ty  of Saturn V. 

weight and configuration t rade-of fs ,  o v e r a l l  r e l i a b i l i t y ,  and operating l i f e  

warrant much more study i n  the  context of a direct-broadcast  TV s a t e l l i t e  

mission. 

Another approach t o  increasing l i f e  

Redundancy concepts, vehic le  

E. POTENTIAL OF SNAP-8 EGS FOR 20,000-HOUR OPERATING LIFE 

The importance of increased operat ing l i f e  f o r  space power systems 

has been s t ressed  i n  numerous mission s tud ie s  concerning SNAP-8 and other  power 

systems for both manned and unmanned missions. The present  SNAP-8 design l i f e  



VI1 In t eg ra t ion  of M;S with TV S a t e l l i t e ,  E ( con t . )  Report No. 3386 

i s  a minimum of 10,000 hours. 

f o r  increased l i f e ,  from 10,000 t o  20,000 hours, w a s  e s t ab l i shed  as one of 

t he  objec t ives  of t h e  present  study. 

s e l ec t ed  on t h e  basis t h a t  i e  w a s  consis tent  with t r ends  i n  planning of long 

dura t ion  missions.  The present  study at tempts  t o  i d e n t i f y  t h e  most probable 

l i f e - l i m i t i n g  f a c t o r s  of t h e  power sys tem.  

q u a l i t a t i v e  because f a i l u r e  modes for  most of t h e  components have not ye t  been 

i d e n t i f i e d  by continuing development t e s t s .  

An assessment of t h e  p o t e n t i a l  f o r  SNAP-8 

This increase  by a f a c t o r  of two was 

The assessment i s  necessar i ly  

1. Assessment of Possible Fa i lure  Modes 

To a s ses s  the  po ten t i a l  f o r  extended l i f e  of SNAP-8, poss ib le  

wearout f a i l u r e  modes of t h e  components of t he  PCS were examined t o  i d e n t i f y  

those c h a r a c t e r i s t i c s  which a r e  l i f e - l i m i t i n g .  I n  the  following paragraphs, 

t h e  components judged t o  be subjec t  t o  wearout f a i l u r e  i n  l e s s  than 20,000 hours 

a r e  discussed.  

a. Boiler 

Based on present developmental experience with mercury 

b o i l e r s ,  t h e  most l i k e l y  f a i l u r e  mode of t h i s  component i s  by corrosion of t h e  

mercury containment tubes.  

perienced t o  da te .  

A program i s  now i n  progress t o  develop b o i l e r  f a b r i c a t i o n  techniques using 

tantalum as t h e  mercury containment mater ia l .  It has been known t h a t  tantalum 

(and o the r  r e f r ac to ry  metals)  has f a r  lower s o l u b i l i t i e s  i n  mercury than gCr- 
1Mo. 
it i s  expected t h a t  r e f r ac to ry ,  or re f rac tory- l ined  b o i l e r  tubes w i l l  be more 

than s u f f i c i e n t  t o  meet t h e  10,000-hour l i f e  requirement. 

l i f e  t o  20,000 hours should involve a r e l a t i v e l y  small, i f  any, add i t iona l  i m -  

pact  on t h e  SNAP-8 system. 

than ordinary s t e e l s ,  an increase  i n  metal thickness  t o  extend l i f e  from 10,000 

Mercury corrosion of b o i l e r  tubes has been ex- 

The reference b o i l e r  tube mater ia l  has been gCr-lMo s t e e l .  

When the  new b o i l e r  design and f a b r i c a t i o n  procedures have been determined, 

Therefore, t o  extend 

Since the  r e f r a c t o r y  metals have much higher dens i ty  
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t o  20,000 hours would probably involve some weight penal ty .  

increase of 100 l b  w a s  estimated. 

A maximum weight 

b. Condenser 

The SNAP-8 condenser i s  subjec t  t o  the  same s o r t  of 

a t t a c k  by mercury but t o  a l e s s e r  degree than the  b o i l e r .  

denser corrosion has not been found t o  be a problem. 

ing  show t h a t  the condenser mean-time-to-failure i s  l e s s  than 20,000 hours, 

t he  probable solut ion to t he  problem would be t o  change t h e  mater ia l  t o  a 

r e f r a c t o r y  metal. 

estimated. 

To date ,  con- 

Should subsequent t e s t -  

To accomplish t h i s  a maximum weight increase of 30 l b  w a s  

c .  Rolling Contact Bearings 

Precis ion b a l l  bearings l u b r i c a t e d  by polyphenyl e the r  

(MIX-hqE)  a r e  used i n  the  TAA and i n  the  MPMA. Analysis has indicated t h a t  

t he  fa t igue  l i f e  of these  bearings i s  wel l  i n  excess of 20,000 hours. Wear- 

out f a i l u r e s  of t he  bearings i n  l e s s  than 20,000 hours may be experienced. 

If,  and when, such f a i l u r e s  a r e  iden t i f i ed ,  t h e  probable so lu t ions  t o  the  

problem a r e :  

(1) Reduce bearing load. To reduce bearing load, 

i t  i s  necessary t o  inves t  some weight i n  redesign of components t o  accommodate 

l a r g e r  bearing s izes .  

so lu t ion .  

A weight penalty of up t o  100 l b  i s  estimated f o r  this 

( 2 )  Select  a b e t t e r  l ub r i can t .  To improve the  

lubr icant ,  an experimental program i s  necessary t o  assure  t h a t  a p o t e n t i a l l y  

b e t t e r  lubricant ,  such as high-grade mineral o i l ,  has t h e  c a p a b i l i t y  t o  with- 

s tand the  rad ia t ion  and temperature environment of SNAP-8. 

mineral o i l  w a s  found unsa t i s fac tory  due t o  t h e  r a d i a t i o n  environment, it might 
involve a weight penal ty  t o  provide a d d i t i o n a l  sh ie ld ing  f o r  the  lub r i can t .  At 
t h i s  point even a rough est imate  of pena l t ies  which must be imposed on the  FCS 

i s  not possible .  

If the  use of 
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d. Dynamic Seals 

Cavi ta t ion erosion has been experienced i n  t h e  t u r b i n e  

dynamic seal which l i m i t s  t o  very low values  the r a t e  of  leakage of mercury t o  

space. 

800 hours of t e s t i n g .  

harder  ma te r i a l  and dimensional changes which s t a b i l i z e  t h e  mercury vapor- 

l i q u i d  i n t e r f a c e  wi th in  t h e  s e a l  assembly. 

t h e s e  changes have corrected t h e  immediate problem. 

Cavi ta t ion  damage t o  t h e  visco pump element w a s  observed after about 

This problem was subsequently resolved by choice of  a 

Subsequent t e s t i n g  has shown t h a t  

A similar type of f a i l u r e  might occur i n  a t tempting t o  

extend l i f e  t o  20,000 hours.  

method usua l ly  employed t o  reso lve  l i f e - l i m i t i n g  design problems, and i n -  

d i c a t e s  such problems are suscept ib le  t o  s t ra ight forward  engineering 

so lu t ions .  

The experience c i t e d  above i s  t y p i c a l  of  t h e  

e. Al te rna tor  and Motor Windings 

Although no f a i l u r e s  have been i d e n t i f i e d  t o  da t e ,  t h e r e  

i s  a p o s s i b i l i t y  t h a t  t h e  organic insu la t ion  p ro tec t ing  t h e  windings of t h e  

a l t e r n a t o r  and t h e  mercury pump motor might d e t e r i o r a t e  after long per iods of 

operat ion.  If t h i s  should occur, the  most probable s o l u t i o n  would be t o  

change t h e  i n s u l a t i o n  mater ia l ,  perhaps t o  u s e  an inorganic  ma te r i a l  l i k e  t h a t  

used i n  t h e  NaK pump motor. 

tihis type  of modif icat ion.  

A small weight increase  might be  assoc ia ted  with 

f .  B a t t e r i e s  

Bat te ry  l i f e  under SNAP-8 environmental condi t ions i s  

not  p rec i se ly  known. Long b a t t e r y  l i f e  may or may not be needed f o r  unmanned 

app l i ca t ions  but  f o r  manned appl ica t ions ,  where restart i s  required,  t h e  

b a t t e r y  must last  as long as t h e  r e s t  of t h e  power system. One poss ib le  

s o l u t i o n  f o r  a b a t t e r y  f a i l u r e  is  a con t ro l l ed  environment which w i l l  p ro t ec t  

t h e  b a t t e r y  from temperatures above 100oF. 

of  one or two kw for r e f r i g e r a t i o n .  

t h e  b a t t e r y .  

This so lu t ion  may involve a penal ty  

A second poss ib le  so lu t ion  i s  d e r a t i n g  of  

Assuming t h a t  t h e  ba t t e ry  does not  completely f a i l  bu t  produces 
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less  than t h e  required power, t h e  addi t ion  of more b a t t e r i e s  a t  lower power 

dens i ty  would provide t h e  necessary power. This so lu t ion  might e n t a i l  a weight 

penal ty  of 150 l b  f o r  an unmanned mission; g rea t e r  weight penal ty  would be 

assoc ia ted  with a manned mission. A t h i r d  possible  so lu t ion  i s  development of  

a new b a t t e r y  which w i l l  withstand the environment. 

penal ize  SNAP-8 performance or weight. 

devoted t o  development of new kinds of b a t t e r i e s  t h i s  so lu t ion  f o r  t h e  1970 
decade i s  not  unlikely.  

This l a t te r  would not 

Since much e f f o r t  cu r ren t ly  i s  being 

2. Fa i lu re  Modes Considered t o  Have Greater 
Than 20,000 Hour L i f e  

The following types of f a i l u r e s  were not  l i s t e d  as l i f e -  

l i m i t i n g  i n  paragraph 1 above because they are not expected t o  cause system 

shutdown or excessive performance degradation i n  20,000 hours of operat ion.  

a. Turbine blade erosion. S ta t ionary  power p lan t  ex- 

per ience with mercury turb ines  operat ing under more severe conditions f o r  

longer periods,  ind ica tes  that t h e  sNAP-8 tu rb ine  should not  sus t a in  

s i g n i f i c a n t  blade erosion i n  20,000 hours. 

b .  Pump impel ler  cav i t a t ion .  No cav i t a t ion  damage t o  

mercury or NaK pump impel lers  o r  t o  t h e  mercury jet-pump nozzle has been 

observed i n  severa l  thousand hours of  t e s t i n g .  If some cav i t a t ion  damage does 

occur, it i s  not, expected t o  cause system shutdown although it could cause 

system performance degradation. 
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TABLE 1 

SUMMARY DESCRIPTION OF SYSTEMS STUDIES 

Baseline Improved 
EGS-1 EGS-2 EGS-3 EGS-4 EGS-5 EGS-6 ------ EGS -0 

36 38 40 Max* 40 40 Max* 

64.4 64.4 64.4 61 62.5 62.5 

X X X X X X 

57 

* 
With 600 k w t  r eac to r  i npu t .  
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TABLE 3 

EGS WEIGHT SUMMARY 

Wet Weight ( l b )  

ms-0 - -1 -2 -3 -4 -5 - 6 
Reactor and Shie ld  2340 2300 2270 2390 2233 2228 2358 

Radiatar  Assembly 2436 2348 2086 2707 1892 1830 2588 

Tota l  11,002 9272 8896 9973 8767 8699 9959 

Power Conversion System 6226 4624 4540 4876 4642 4641 5013 

- - - - - -  

Inventory Weight (lb ) 

EGS-0 --23!--4-5: -1 6 
Sodium-Potassium 502 437 430 541 475 471 610 
Merzury 189 189 189 205 189 189 205 

Polyphenyl Ether  123 123 115 127 114 114 127 

Tota l  814 749 734 873 778 774 942 
- - - - - -  

Table 3 
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TABU 5 

ADVANCED REACTOR CHARACTERISTICS 

Lengths ( i n .  ) : I n l e t  Plenum 

Lower Grid 

Fuel Elements 

Upper Grid 

Out le t  Plenum 

3.50 
0.65 

17.37 
0.85 
1.50 

Diameters ( i n .  ) : Forward Plane o f  Upper Grid 2 1 . 1  

Mid-Plane of Reactor 24.4 
Plane 1 i n .  Forward 

of  Forward Plane of Lower 
Grid P l a t e  27.6 

Core 9.2 

Minimum Coolant Temperature Drop (OF) : 100 

Pressure Drop ( a t  600 kwt, 13.6 lb / sec  N a K  Flow): 

With Above Diameters With 0.87 i n .  Added t o  Above Diameters 

Core Pressure Drop ( p s i )  4.8 0.8 
I n l e t  -t o -Out l e t  Pres sure  

Drop, AGC Connections ( p s i )  6.5 2 .5  

NOTES : 

(1) 

( 2 )  

Diameters include 1/2 i n .  radial clearance when drums are i n  t h e  
outward pos i t i on .  

The r eac to r  assembly tapers  outward from t h e  21 .1  i n .  d i a  t o  t h e  
27.6 i n .  d ia ,  and then t a p e r s  back inwards t o  the  s h i e l d  
i n t e r f a c e .  

The ac tua to r  d r ive  extends approximately 10 i n .  beyond t h e  o u t l e t  
plenum. It i s  t o t a l l y  contained wi th in  t h e  r eac to r  cone ang le .  

The weight of t h e  advanced r e a c t o r  corresponding t o  t h e  632 lb 
l i s t e d .  i n  t he  FF Phase A - I 1  weight compilation i s  600 l b .  

(3)  

(4) 

Table 5 
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11 
TABLE 6 

SUMMARY OF VAPOR-CHAMBER FIN RADIATOR DESIGN DATA 

Input : heat re jec ted  377,m 
NaK AT 660 F - 488OF 
armor r a t i o  0.25 
vapor chamber surv iva l  r a t i o  0. go 
surface emissivi ty  0.90 

cy l indr ica l  r ad ia to r ,  rad ia t ing  outside only - diameter 9 f e e t  

Nun-ber Outer Surface Total  Radiator Radiator Radiator1J2 
Area, One No. of Tube I D  Length Area Weight of 

No. Tubes Chamber ( i n . 2 )  Chambers ( i n . )  ( f t )  ( f t 2 )  ( l b )  - 
1 

2 

3 
4 
5 
6 

7 
8 
9 
10 

150 

15  0 
125 

3-25 
LOO 
100 

80 

80 

50 
50 

80 

40 

80 
40 

80 

80 

80 

40 

40 

40 

1225 

2447 

1257 

2514 

1295 

2587 

1330 
2656 

2800 

1400 

.181 
,181 
194 

.194 
* 211 

.211 

.230 

.230 

.276 

.276 

27- 9 
27.8 

28.0 

28.0 

28.2 

28.2 

28.5 

28.5 

29.2 

29.2 

788 
785 
790 

790 

796 
796 
804 

804 

825 

825 

1766 
1653 
1666 

1553 
1572 

145 7 
1500 

1381 

1289 

1403 

1. Weight includes tubes and armor, f i n s ,  headers,  ducts,  and armor, and 
a l s o  includes the  f l u i d  inventory (NaK). 

400-500 l b  of s t i f f en ing  s t ruc tu re  i s  required with the  tube and f i n  
t o  support  the  PCS, and t h e  reac tor -sh ie ld  combination. 
chamber f i n  r ad ia to r  may require  l e s s  addi t iona l  s t ruc tu re  due t o  i t s  
be5te r s t  r x t u r a l  r i g i d i t y .  

20  
The vapor 
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TABLE 11 

PCS COMPONENT WEIGHT REDUCTION SUMMAHY 

Baseline 

Component 
D r y  Weight 

446 

SNAP-8 

Component 0 
A 1  t e ma t o r assembly 

Turbine assembly 256 

Mercury PMA 15 0 
NaK PMA primary 225 

NaK PMA ( H F G )  225 
L/C PMA 28 
Mercury b o i l e r  377 

Auxi l ia ry  NaK-NaK 20 
h e a t  exchanger 

PNL NaK expansion 134 

PCS s t r u c t u r z  1600 
r e  s e l v o i  r 

Tota ls  (1) 3461 

Imp roved 

Component 
D r y  Weight 

SNAP-8 

0 
380 

223 

85 
170 
170 
20 

25 8 

12 

98 

500 

1916 

Weight 

ZT 
66 

33 

65 
55 
55 
8 

119 

8 

36 

1100 

15 45 

Remarks 

Titanium ends and 
l igh ten ing  p a r t s  

Eliminate b o l t e d  
f langes and 
l i gh ten ing  p a r t s  

Lighten p a r t s  

Lighten p a r t s  

Lighten p a r t s  

Lighten p a r t s  

Reduce NaK tube w a l l  
and diameter 

Reduce s i z e  of h e a t  
exchanger t o  meet 
requirements 

Scaled t o  NaK 
invent ory 

Replace t r u s s  s t r u c t u r e  
with t ens ion  cables  and 
support  NS on re inforced  
r ad ia to r s  

( l )No te :  This i s  not  t h e  t o t a l  EGS weight, bu t  only the  weight of  t he  i t e m s  
changed, as l i s t e d .  

Table 11 
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TABLE 1 2  

COMPARISON OF ENERGY DISTRIBUTION FOR 5800- AND 4800-RPM NaK PMA'S 

pump 
Eead r i s e  (f't) 

Flowrate (gpm) 

Hydraulic power (kw) 

Impel ler  input power (kw) 

Hydrodynamic Losses (kw 1 
Cylinder (mot80r r o t o r )  

Thrust bearing d i sk  

Bearing pads 

Rotor nut 

A,uxiliary coolant pump 

5800 rpm 

115 
100 

1.59 
2.24 

.410 
350 

* 095 
105 

.io5 

4800 rpm* 

78.3 
82.5 

89 
1.25 

,340 
* 199 
079 
059 

.060 

Motor 

Required power 

S t a t o r  i r o n  loss 

S t a t o r  copper loss 

Rotor can loss  

NaK eddy loss 

St ray  load 

1.065 9 737 

8-pole Induct ion 

3-31 
.112 

.123 

.154 
351 

.060 

10 -Pole Synchronous 

1.987 
.112 

.074 
099 

.225 

.040 

R e  qu i  red  Icput  ( kw ) 4.110 2.537 

~ * 
Mechanical par t s  i d e n t i c a l  t o  p a r t s  for 5800-rpm PMA. 
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TABLE 13 

PARAMETERS FOR CUSTOM DESIGNED NaK PMA'S* 

4 NaK Flow Rate 4 10 

- 4 5  7 a 
Pipe OD ( i n .  ) 1.875 2.0 2.125 2.25 2.375 2.5 
Line DP ( p s i )  4.1 6.0 6.9 8.1 a. a 9.4 
Reactor AP ( p s i )  1.6 2.5 3.0 308 4.4 5.1 
Boi l e r  AP ( p s i )  1.8 1.8 1.8 1.8 1.8 1.8 

LOOP H ( p s i )  7.5 10.3 11.7 13.7 15.0 16.3 
Hyd Power (kw) 0.27 0.49 0.70 0.98 1.13 1.55 

T% 16.5 25.2 31.1 35.7 36.1. 38.8 

Primary 

NaK 

Loop 

PMA Input (kw) 1.63 1.94 2.25 2.74 3.13 4.00 

Radiator  AP ( p s i )  7.5 10.0 11.0 12.0 

Line AF' ( p s i )  2*3 3.4 4.0 4.5 

Rejection PLR AF' ( p s i )  0.3 0.5 0.7 0.9 
Heat Cond AP ( p s i )  2.3 4.0 5.0 6.0 

Loop LOOP ( p s i )  12.4 17.9 20.7 23.4 
Hyd Power ( k w )  0.40 0.77 1.11 1.50 

1% 21.9 32.7 37.2 38.5 
PMA Input (kw) 1.a2 2.34 2.98 3.90 

* 
Used i n  a n a l y s i s  of EGS-5 and EGS-6. 

Table 13 
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TABLE 14 

SUMMARY OF MPMA PARAMETERS AND PARASITIC LOSSES 

Turbine Mounted Al t e rna to r  Mounted 
Exis t ing  MPMA pump pump 

Operating Conditions (EGS-2) 
Speed (rpm) 

Flow Rate (gpm) 

Head ( f t )  

Impel ler  Discharge Pressure 

Jet  Pump Discharge Pressure 

J e t  Pump Suction Pressure 

Pump Eff ic iency ($I) 

(psis) 

(psis 1 

(psis 1 

P a r a s i t i c  Losses ( w a t t s )  

Hydraulic Power 

Pumping Losses 

Motor Viscolds & Mechanical 
Losses 

Mctor E l e c t r i c a l  Losses 

Addit ional  Loss of Duplex 

Visco Sea l  Loss 

TuTbine Bearings & S l i n g e r  

To ta l  Pump -Re l a t e  d Paras it i c 
LOSS ( w a t t s )  

Net Reduction i n  P a r a s i t i c  
Losses ( w a t t s )  (compared 
t o  e x i s t i n g  MPMA) 

Bearing 

Losses 

7800 
1.45 
89.4 

51.4 

70 

13 
25.8 

317 
913 

1640 
428 

---- 
---- 

1664 

4962 

0 

Table 14 

12,000 

1.45 
89.4 

5 14 

70 

13 
25.8 

317 
913 

--- 
--- 

200 
--- 

1664 

3094 

1868 

12,000 

1.45 
89.4 

514 

70 

13 
25.8 

317 
913 

--- 
--- 

200 

15 

1664 

31.09 

1853 
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TABLE 15 

COMPARISON OF LOSSES FOR PRESENT SNAP-8 ( 2OO0C ) AND 
HIGH-TEMPERATURE ( 4OO0C ) ALTERNATORS 

Output (kw ) 51.1 51.1 54.4 54.4 
PF 1.0 1.0 1.0 1.0 

Temp ("C) 200 400 200 400 

Losses (watts ) 
660 1610 750 1830 S ta to r  I R 

S t a t o r  I ron  2110 2110 2110 2110 

2 

Field 

Field 12R 240 585 260 635 
Pole  Face 690 690 690 690 
Seals & Brgs. 1960 1960 1960 1960 

Input  (kw ) 56-76 58.06 60.17 61.63 
Efficiency (%) go. 0 88.0 90.4 88.3 

T o t a l  Losses 5660 6955 5 770 7225 

Table 15 
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TABLE 16 

MERCURY BOILER MODIFICATION SUMMARY 

Hg 
No. of Hg Inventory NaK Tube I D  NaK Tube Wall NaK Inventory D r y  Weight 0 ( i n .  ) ( l b )  EGS Tubes ( l b )  ( i n . )  - 

107 377 -0 7 17 4.0 .125 

-1 7 1.7 3.25 
-2 7 17 3-25 e 049 56 ’ 258 

-3 9 
-4 7 17 4.0 e 060 
-5 7 17 4.0 .060 

.049 56 258 

22 4.0 .060 72 343 
107 280 
107 280 

.060 138 356 -5 9 22 4.55 

Table 16 
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jl TABLE 17 

CAPACITIVE REACTANCE (kvar )  FOR ALTERNATOR LOAD POWER FACTOR CORREXTION 

-0 

-1 

-2 

-3 
-4 
-5 
-6 

Alternator  Load pS 

64 
.64 
90 
92 

1.0 

1.0 

1.0 

kva r - 
0 

0 

24* 
46 
48 
47 
71 

* 
This EGS uses synchronous pump motors operat ing a t  1.0 pf 
which reduces the  amount of leading kvar  required t o  
obta in  the  0.9 a l t e r n a t o r  load  power f ac to r .  

Table 17 
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TABLE 18 
WEIGHT SUMMARY - TV SATELLITE VEHICLE 

(pounds ) 

10 > 010 POWER SYSTEM (Including f l u i d  inventor ies  ) 
React or Assembly 

Shield 

Power Conversion System ( including s t ruc tu re  ) 
Radiator Assembly 

HRL 

L/C 
Radiator S t i f f ene r s  and Adapter 

Thermal Insu la t ion  

75 8 
2430 
4702 
11.55 

940 
215 

715 
250 

2,360 TV SYSTEM 

Antenna 

Power Conditioning 

Klystron Transmitter 

Uplink Receiver 

Water Cooling System (DV) 
Support Structure  

Radiator 

Radiator S t i f f ene r s  and Adapter 

Coolant Inventory 

2,030 REACTIVE THRUST SYSTEM (MONOPROPELLANT) 

1150 

310 
35 
535 - 

Propel lant  and Gas 

Tankage 

Nozzles > Plumbing & Controls 

Support Structure  1 14 400 ORBITING WEIGHT 

2 240 JETTISONABLE GROUP 

Nose Shroud 

Thermal S'nielci 

Adaptor Structure  & Shroud 

200 

900 
1140 - 

16,640 LAUNCH WEIGHT 

Table 18 
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TABLE 19 

SUMMARY OF SNAP-8 PERFORMANCE AND SPECIFICATION DATA 

Met E l e c t r i c a l  Output (kwe) 

Voltage (AC v o l t s )  

Frequency ( cp s ) 

Voltage Regulation 
(from 3 . 5  t o  35 kw) 

Load Power Factor  

Phase 

Harnronic, Content 

Rated L i f e  of EGS ( h r )  

Radiation Enviroment  
( i n  area of PCS) 

Fa s t  neutron 

Operat ional  Gravity Environment 

* 2 Radiator  Area ( f t  ) 

HRL 

L/C 

* 
EGS-4 da ta  ad jus ted  for synchronous o r b i t  

Table 19 

35 

1201 208 

400 + 4 - 
- + %  

0.85 lagging 

3-phase, b w i r e  

8$o FMS l i n e - t o - l i n e  
with balanced l i n e a r  
106 l oad  a t  1.0 pf 

10,000 continuous 

5 x 10l2 nvt  i n t eg ra t ed  
dose fo r  10 4' hours 

5 x 10 7 radg ( C )  , i n t eg ra t ed  
dose for 10 hours 

Zero gravi ty  

706 

173 
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TABLE 20 

SUMMABY OF TYPICAL DATA FOR 
STATION KEEPING/ATTITUDE CONTROL 

OF TV SATELLITE 

PROPELLANT SYSTEM 

Type Propellant 

Total  Impulse ( lb - see )  

Spec i f ic  Impulse ( see )  

Propel lant  Weight ( l b )  

Tank Weight ( l b )  
3 Tank Volume ( f t  

Operating Pressure ( p s i a )  

Expulsion Method 

GAS PRESSURIZATION SYSTEM 

Type Gas 

I n i t i a l  Pressure ( p s i a )  

Gas Weight (lb) 

Tank Weight ( lb  ) 

THRUST CHAMBER 

No. Required 

Chamber Pressure ( p s i a )  

Gas Temperature ( F)  

Thrust Per Chamber ( l b )  

Minimum Pulse B i t  ( l b - see )  

Area Ratio 

Propel lant  Flow (lb/see/ehamber) 

_Miscellaneous Weight ( l b )  

0 

(Valves, piping, e t c  . ) 

STATION KEEPING 

Monopropellant, Hydrazine 

240,000 

220 

1090 

200 

1 9  
225 
Bellows 

Nitrogen 

3000 

21 

100 

4 
175 
1500 

20 

0.20 

40/1 

0.091 

25 

Table 20 

~~~ 

ATTITUDE CONTROL 

8600 
220 

39 
10 

0.7 

225 
Bellows 

Nitrogen 

3000 

0 .8  

12 

175 
1500 

0.5 
0.005 

4011 

0.0023 

10 
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TABLE 21 

EFFECT OF POWER INCREASE AND REDUNDANCY 

ON Tv SATELLITE VEHICLE 

Available Power (kw) 

Launch Weight ( l b ) ,  ( f o r  10,000 hours) 

No redundancy 

With redundancy 
* 

2 Required Radiator Area ( f t  ) 

2 Available Vehicle Surface Area ( f t  ) 

Vehicle Length ( f t )  

Antenna Diameter ( f t )  

35 
(EGS-4) 

17,000 

22,000 

l J 2 5 0  

1,900 

70 
(EGS-6) 

20 , 000 

26, ooo 

2,100 

2,100 

59.3 62 

34 27 

140 
2 ( EGS -6 ) 

40,000 

52 , 000 

4 , 200 

4,200 

68 

22 

* 
Includes one redundant PCS, set of rad ia tor  tubes and armor and k lys t ron  tube 
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Figure 44 
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APPENDIX A 

METEOROID PROTECTION CRITERIA* 

The' p ro t ec t ion  of r a d i a t o r s  from c r i t i c a l  damage due t o  meteoroid impact i s  

composed of two f i e l d s  of study. 

terms of p a r t i c l e  mass, f lux,  dens i ty ,  and e f f e c t i v e  ve loc i ty ,  and second, t h e  

d e f i n i t i o n  of high v e l o c i t y  impact i n  terms of damage mechanisms f o r  various tar- 
get-prc  j ec t i l e  combinations. 

F i r s t ,  t h e  d e f i n i t i o n  of t h e  meteoroid hazard i n  

I .  METEOROID HAZARD 

Analysis of t h e  meteoroid population i n  terms of t h e  above-mentioned va r i ab le s  

has l e d  t o  t h e  following values t o  be used f o r  r a d i a t o r  p ro tec t ion  purposes: 

The cumulative frequency F>, i s  expressed as a func t ion  of t he  meteoroid 

mass m, by a n  equation of t h e  form, 

-B F > = a m  

where a and B a r e  experimentally determined constants .  For F> expressed i n  u n i t s  

of t h e  number of p r t i c l e  impacts pe r  day of mass m or l a r g e r ,  on a t a r g e t  of one 

square f o o t  of a r e a ,  t h e  constants  a and B are,  

-11 a = 5.3 x 10 

These a r e  t h e  Whipple 1963A values without e a r t h  sh i e ld ing .  The value of 
meteoroid d e n s i t y  considered most appl icable  t o  t h i s  range of t h e  meteoroid popula- 

t i o n  i s  t h a t  given by Verniani as p = 0.2 g/cm3. 
P 

* 
The information i n  t h i s  Appendix i s  taken from a NASA-Lewis Research Center 
Memorandum from S. Lieblein,  Chief,  Flow Analysis Branch, Fluid System Components 
Divis ion t o  Charles J .  &ye, Space Power Systems Division, same sub jec t ,  dated 
August 20, 1965. 

A - 1  
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Analysis of t h e  a v a i l a b l e  photographic meteor da t a  c u r r e n t l y  being conducted 

ind ica t e s  t h a t  the p a r t i c l e  ve loc i ty  i n  t h e  v i c i n i t y  of the  E a r t h ' s  o r b i t  has a n  

e f f e c t i v e  value for penetrat ion ca l cu la t ions  of between 17 and 20 km/sec. 

f i n a l  value i s  obtained, 20 km/sec (65,500 f t / s e c )  i s  recommended f o r  use. 

U n t i l  a 

1 
I 
8 
D 
I 
I 
I 
1 
I 

Comprehensive discussions of t h e  meteoroid population i n  t h e  photographic 

meteor range can be found i n  NASA TN D-2958 by N. Clough and S. L ieb le in ,  and i n  

r e p o r t s  i n  preparation by C .  D. Miller. An a n a l y s i s  of t he  e n t i r e  meteoroid 

population cu r ren t ly  i s  a v a i l a b l e  i n  a t echn ica l  note  by I. Loeff ler  and S. L ieb le in ,  

c u r r e n t l y  i n  e d i t o r i a l  committee review. 

11. IMPACT DAMAGE 

The second area r equ i r ing  d e f i n i t i o n ,  t h a t  of high-veloci ty  impact, has been 

s tudied experimentally under NASA con t r ac t  w i t h  t h e  a i m  of generat ing comparative 

design information for space r a d i a t o r  meteoroid p ro tec t ion .  

P o t e n t i a l  damage under space operating conditions has been defined for con- 

vent ional  material r a d i a t o r s  as inner  su r face  dimple, spall, and pe r fo ra t ion .  

Extensive inves t iga t ion  i n t o  various materials has yielded required thicknesses 

f o r  prevention of inner  surface damage, as w e l l  as f o r  t h e  ma te r i a l s  c o r r e l a t i n g  

c o e f f i c i e n t  f o r  the  pene t r a t ion  r e l a t i o n s .  

The ca l cu la t ions  of required armor thickness for a s i n g l e  material can b e  

obtained from the following equation along wi th  t h e  var ious constants  obtained from 

the  above described program. 

u 3  62.4 1/2 2/3 1/38 1/38 8 
1 

a 
t =  a Y (:) pp  ( P t  (F) (*) (*] ( 2 )  

where 

- 
ta - 

a =  

Y =  
- - 

pP 

P t  - 
- 

required armor thickness i n  inches 

damage thickness f a c t o r  

ma te r i a l s  c o r r e l a t i n g  c o e f f i c i e n t  

0.2 g/cm3 

t a r g e t  ma te r i a l  d e n s i t y  l b / f t 3  

A-2 
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C = 12 dEtg/pt sonic ve loc i ty  of t a r g e t  ma te r i a l  where E i s  Young‘s 
modulus a t  operating temperature i n  lb / in .2  and g is  52.2 f t / s e c 2  

a = 5.3 x 10-11 

@ = 1.34 

A = ex te rna l  surface area of armor ( f t 2 )  

T = mission time i n  days 

P ( o )  = design p robab i l i t y  of no c r i t i c a l  damage 

The constants  a and y vary from material t o  material and with damage mode. Materials 

c o e f f i c i e n t s  f o r  use i n  Equation ( 2 )  obtained f o r  aluminum a t  room temperature are 

summarized i n  t h e  following tabula t ion .  

Material  Y 
7075-T6 A 1  1.99 
2024-T6 A 1  1.86 
6061-~6 A 1  1.80 
356-T51 A 1  (Cast) 2.27 

A t  a temperature of TOO-, t h e  values of y tend t o  increase by about 10 percent .  

Equation ( 2 )  can a l s o  be used f o r  t h e  c a l c u l a t i o n  of armor thickness  f o r  

l i n e d  aluminum tubes wi th  a co r rec t  choice of t h e  damage f a c t o r  a .  For c a s t  alumi- 

num armor over 316-stainless  s t e e l  l i n e r s ,  .028” t h i c k ,  t h e  inner  su r face  of t h e  

l i n e r  w i l l  not s p l l .  I n  general ,  the i n n e r  su r face  i n t e g r i t y  i s  not  l o s t ,  even a t  
complete c losu re  of the  tube. Values of t h e  damage thickness f a c t o r  as a func t ion  

of dimple he igh t  produced i n  t h e  l i n e r  a r e  given i n  Figure A-1. A recommended value 

of a is  1 .5 ,  which represents  a dimple he igh t  of about 20 percent t h e  diameter. I n  

using t h i s  value,  however, i t  i s  implied t h a t  t h e  A l f i n  bonded configurat ion i s  

comparable t o  t h e  c a s t  bond configuration of t h e  impact t a r g e t .  

111. FIN-TUBE GEOMETRY 

Reproduced i n  Figure A-2 i s  t h e  t y p i c a l  SNAP-8 r a d i a t o r  tube and f i n  element 

enclosed i n  your memorandum of August 10, 1965. The thickness  ca l cu la t ed  from 

A-3 
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Equation ( 2 )  w i t h  t h e  above constants r e f e r s  t o  ta as shown. The s i d e  w a l l  su r f ace  

wi th  armor thickness,  ts, i s  vulnerable t o  impacts through t h e  f i n  only and, t he re -  

f o r e ,  i s  sub jec t  t o  design as bumpered armor. Preliminary r e s u l t s  from impacts 

i n t o  similar s t a i n l e s s  s t e e l  bumper configurat ions wi th  a .020" t h i c k  f i n  i n d i c a t e s  

t h a t  ts can be s u b s t a n t i a l l y  smaller  than ta.  

scheduled, b u t  have not ye t  been f i r e d .  It appears ,  however, t h a t  t h e  adopt ion of 

t h e  r e l a t i o n s h i p  ts = 0.25 ta should be adequate f o r  t h e  configurat ion of Figure 

Comparable sho t s  wi th  aluminum are 

A-2. 

Since it appears t h a t  very l i t t l e  thickness  i s  needed f o r  ts, it may be w e l l  

t o  consider configurations f o r  a tube and f i n  element as shown i n  Figures A-3a and 

A-3b. I n  t h e s e  configurations,  a n  increase i n  l i n e r  thickness ,  tQ, t o  around .060 

inches,  w i l l  a l l o w  t h e  removal of a l l  t h e  s i d e  w a l l  armor, ts, and poss ib ly  produce 

lower weights. For t he  bumpered configurat ion,  t h e  use of tf < < 2tf  and 

ta + 3/8" should be adequate from the  meteoroid p ro tec t ion  point  of view. 

Preliminary r e s u l t s  of t h e  experimental impact program can be found i n  NASA 

TN D-2472 by S. Lieblein,  N.  Clough, and A.  McMillan. 

design r e s u l t s  from the  program are i n  a series of four  t echn ica l  notes by 

N .  Clough, A .  McMillan, and S. Lieblein ( i n  review) and summarized i n  papers i n  

preparat ion by N .  Clough and J. Diedrich t o  be presented a t  t h e  AIAA F i r s t  Rankine 

Cycle Space Power Systems S p e c i a l i s t s  Conference, October 26 - 28, and by S. 

Lieblein t o  be presented a t  the  American Nuclear Socie ty  Annual Meeting i n  November 

The more comprehensive 

1965 
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APPENDIX B 

ELECTRICAL GENERATING SYSTEM WEIGHTS 

The t a  l e s  i n  t h i s  appendix present t h e  weights of each EGS s-udied i n  the  

performance p o t e n t i a l  program. 

n i f icance  of t h e  values l i s t e d .  The weights f o r  t h e  PCS a r e  grouped by loops as 

Primary N a K  loop, mercury loop,  e t c .  Dry weights,  l i q u i d  inven to r i e s  i n  com- 

ponents,  and wet weights a r e  l i s t e d .  

l i s t e d  sepa ra t e ly  a t  the  bottom of the d e t a i l e d  system weight breakdown. 

Remarks a r e  given t o  a i d  i n  i n t e r p r e t i n g  t h e  s i g -  

The t o t a l  f l u i d  inventory of each loop i s  

The e f f e c t  of system improvement and s p e c i f i c  component s u b s t i t u t i o n  or i m -  

provement on o v e r a l l  system weight can be determined by comparing the  weight break- 

down for t he  two systems involved i n  t h e  change. 

t o  be compared d i r e c t l y  s ince  they have a comparable n e t  power output.  

-6 both have a r e a c t o r  input  of 600 kwt; these  systems a r e  d i r e c t l y  comparable. 

EGS-0, -1, -2, -4,, and -5 a r e  

ES-3  and 

B -1 
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D 
1 
1 
I 
D 
I 
I 
D 
D 
I 
D 
8 
I 
I 
I 
I 
I 
D 

EGS -0 

Dry 
Weight 

Subsystem and Component l lb l  

I. NUCLEAR S Y S W  

A Reactor Assembly 

E. Shield 

1. Total 

11. POWER CONVERSION SYSTEM 

A Primary Loop 
I. NaK PMA 
2. Parasitic load resistor 
3 Auxiliary start heat exchanger 
4. NaK expansion reservoir 
5 Piping 
6 Thermal insulation 
7 Boiler NaK inventory 

A. Subtotal 

B.  Mercury Rankine Loap 
I. Boiler 
2. Turbine alternator assembly 
3. Condenser 
4. Hg PMA 
5. Hg iniection syrtem 
6 Va lvs  
7. Hg piping lvaporl 
8. Hg piping I l iquidl 
9. Thermal insulation 

B. Subtotal 

C. Heat Rejection Loop 
I. HRLNaK PMA 
2. HRL NaK expansion reservoir 
3 Valves 
4. Piping 
5. Condenser NaK inventory 

C. Subtdal 

D. Lubricant-Coolant Lmp 
I. UCPMA 
2. UC expansion reservoir 
3. Valves 
4. Piping 
5 Thermal insulation 
6. Component UC inventory 

D. Subtotal 

I. Transformer reactor assembly 
2. Low-temperature control assembly 
3. Inverter assembly 
4. Batleries 
5. Start programmer 
6 Power bus. harness, misc. 
7 SCR speed contrd 
8. Capacitor 

E. Electrical System 

E Subtotal 

F. PCS Structure 
I. PCS frame 
2. Support brackets 

F. Subtotal 

C Instrumentation - Subtotal 

II Total 

Ill. FLIGHTRADIATOR ASSEMBLY 

I. Radiator 
2. Piping 

A. HRL Radiator Assembly 

A. Subtdal 

B. UC Radialor Assembly 
I. Radiatw 
2 Piping 
3. Insulation 

E. Subtotal 

- Subtotal 
C Radiator stringers& rings 

Ill. Total 

TOTAL ECS WEIGHT 

Fluld Inventory Summary: 

Sodium-Pdassium Alloy INaKI 

Mercury IHqI 

Polyphenyl Ether 14P3EI 

761 

1 5 M  

123111 

225 
67 
m 

134 
33 
23 

M2 

377 
702 
91 

I50 
86 
13 
51 
I 1  

92 
1513 

225 
45 
12 
30 

312 

28 
35 
16 
41 
33 

159 

3% 
m 
316 
140 

15 
190 

-_ __ 

__ 

1226- 

IMO 
225 

1835 

1%- 

Efl 

109  
2 

1129 

281 
m 

411 

-610 

-Ilo_ 

r2i i0  I 
10188 

932 

1m 

123 
814 
- 

TABLE B-1 

Weight Breakdown 

T a b l e  €3-1 

Wel 
Weight 

IIbl 

790 

1550 

m 

233 
89 
31 

152 
82 
33 

610 

mi 
702 
142 
150 
144 

13 
52 

106 
32 

1842 

233 
70 
12 
M 

379 

28 
M 
16 
77 
33 
10 

214 

_. 

__ - 

356 
m 
316 
140 
I5 

19u 

.. 

1226 

16M 
235 

1835 

I X J  

i 6224 

Imp 
70 

1287 

337 
32 

479 

670 

IC 

- 

rm 
11002 

Remarks 

SBDS reactor 

Sized lor selected conlig. and reactor kM 

M. measured w i g h t  
M. 
C. i detailed calculation 
Loop inventory estimated lor 70% l luid 
do' - 2' OD x .035" 
112" Min - k F 182 
Included i n  wet weight 01 Item B I  

C. Wet weight includes Item A7 
C. 
M. Wet weigid includes Item C5 
M. 
M. Reservoir inventory after injection 
C. Flow control and isolation valves 
13' - 1. I S '  OD x . 120": Turb. exit bellows, 24 Ib. 
12' - I"  00 x .035": 24' - 314 OD x ,035' 
112" Min  - k F 182 

M. 
Lwp inventory estimated lor 700F l luid 
Temp. control and aux. start loop slo valves 
30' - 2' OD x ,035": 18' - US '  x .DPS' (Start Lmpl 
Included i n  we( weight 01 Item 83 

Loop inventory estimates for 70% l luid 
M. 4 shutoll valves 
87' - 1" OD x .03Y': 46' - 34" OD x ,035 
112' Min - k F IS? 
Estimated lor components using UC fluid 

C. 
M. 
M. 
C. 
C. 
Power bus 99 Ib: PCS harness M Ib: M in  - k XJ Ib. 

Not used in this system 
Speed control included in  E l  and 2 

Rigid truss type 
Estimated lor components mounted on frame 

Incl.  tubes, manifolds, armor, fins 
40' - 2' 00 x ,035" 

Incl. tubes, manifolds, armor, tins 

114' M in  - k diaphragm at base of HRL rad. 
70' - 34" OD x ,035" 

Described in Sec I I I D  
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TABm B-2 

EGS-1 Weight Breakdown 

Subsystem and Component 

I. NUCLEAR SYSTEM 

A. Reactor Assembly 

E. Shield 

I. Total 

E G S - 1  WEIGHT BREAKDOWN 

Dry 
Weight 

I lb l  

761 

I510 

L2nll 
II. POWER CONVERSION SYSTEM 

A. Primary L w  
I NaK PMA 
2. Parasitic load resistor 
3 Auxiliary start heat exchanger 
4. NaK expansion reservoir 
5. Piping 
6 ,  Thermal insulation 
7. Boiler NaK inventory 

A. Subtotal 

B. Mercury Rankine Lwp 
I. Boiler 
2. Turbine alternator assembly 
3 Condenser 
4 HgPM4 
5. Hg injection system 
6. Valves 
1 Hg piping I v a p x l  
8. Hg piping l l iquidl 
9. Thermal insulation 

E. Subtotal 

C. Heat Rejection Loop 
I HRLNaKPMA 
2 HRL NaK expansion reservoir 
3. Valves 
4. Piping 
5. Condenser NaK inventory 

c. Subtdal 

D. Lubricant-Cmlant Lmp 
I. UCPMA 
2. U C  expansion reservoir 
3 Valves 
4. Piping 
5. Thermal insulation 
6. Component UC inventory 

D. Subtotal 

I Translormer reactor assembly 
2. Low-trmperature control assembly 
3. Inverter assembly 
4 Batteries 
5. Start programmer 
6 Power bus, harne5r. misc. 
7. SCR speed control 
8. Capacitor 

E. Electrical Sytlem 

L. Subtotal 

F PCS Struclure 
I. PCS lrame 
2, Support brackets 

F.  Subtotal 

C. Instrumenlation - Subtotal 

11. Tdal 

1 1 1 .  FLIGHTRADIATOR ASSEMBLY 

I. Radiator 
2. Piping 

A. HRL Radiator Assembly 

A. Subldal 

E UC Radiatcf Assembly 
I Radiatw 
2. Piping 
3. Insulat ion 

6. Subtotal 

C. Radiator Stringers B riw 
- Subtdal 

I I I. Total 

TOTAL tCS WEIGHT 

fluid Inventory Summary: 

Sodium-Pdassium Alloy N a K l  

Mercury tHgl 

Pdyphenyl Ether 14P3El 

170 
61 
12 
98 
33 
23 

403 - 

258 
a3 
91 
85 
86 
13 
51 
11 
32 

1230 

170 
45 
12 
M 

257 

70 
35 
16 
47 
33 

T5l- 

356 
m 
316 
140 
I 5  
IW 

_- 

~~ 

__ 
1226 

500 
235 

120 

__ - 
l? 

@g 

993 
M 

1023 

281 
20 
A 
?B 

708 

- 

~ 

m 
8523 

437 

189 

123 
749 
- 

Flud 
Inventory 

Weigh1 
(Ibl - 

29 

29 INaK) 

8 
22 
10 
13 
49 

56 
1581NaKI 

I 7  

18 

58 

I 
95 

-. .. 
189 ltql 

8 
25 

36 
33 

Ik lNaKl 

I5 

M 

10 
55 14P3El 

~ 

_ _  
._ 

_ _  

_ _  

102 

1% I N a K l  
48 

56 
12 

64 14P3EI 

-_ 

Table B-2 

Wet 
Weight 
(Ib) 

lpo 
1510 

123001 

178 
89 
22 

111 
82 
2? 

50: 

331 
603 
142 
85 

144 
13 
52 

106 
37 

im8 

I78 
70 
12 
64 

324 

20 
M 
16 
77 
33 
10 

206 

356 
209 
316 
Id0 

15 
lull 

- 

1226 

500 
235 
735 

120 
~- ~ 

lzzl 

1095 

1173 

331 
32 
98 

467 

708 

78 

_- 

_ _  

r2348) 
9272 

Remarks 

S8DS reactor 

Adjusted lor reactor kwt 

Components lightened as described in SK. VB 

Lightened and sized to loop inventnry 

Wet weight includes Item A7 

Wet weight includes Item C5 

 NO^ used i n  this syrtem 
Speed coiitrol included in E l  and 2 

Tension-member type lrame 

10' - Y4" OD x ,035 
I /# '  Min-k diaphragm at b a s e d  HRL rad. 



I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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TABLE B - 3  

EGS-2 Weight Breakdown 
E C S - 2  

Dry 
Weiqht 

Subsystem and Component l lb l  

I NUCLEAR SYSTEM 

A Reactor Assembly 

B Shield 

I Total 

II POWER CONVERSION SYSTEM 

A Primdry Lmp 
I NaK PMA 
2 Parasitic load resistor 
3 Auxiliary start heat exchanger 
4 NaK expansion reservoir 
5 Piping 
6 Thermal insulalion 
7 Boiler NaK inventory 

A Subtotal 

B Mercury Rankine Lmp 
I Boiler 
2 Turbine alternator assembly 
3 Condenser 
4 Hg PMA 
5 Hg injection system 
6 Valves 
7 Hg piping lvaporl 
8 Hq piping (Iiquidl 
9 Thermal insulation 

B Subtotal 

C Heat Rejection Imp 
I HRLNaKPMA 
2 HRL NaK expansion reservoir 
3 Valves 
4 Piping 
5 Condenser NaK inventory 

C Subtotal 

D Lubricant-Cmlant L q  
I U C P M  
2 UC expansion reservoir 
3 Values 
4 Piping 
5 Thermal insulation 
6 Component LIC inventory 

0 Subtotal 

I Transformer reactor assembly 
2 Lowtemperature mntro l  assembly 
? lnverler assembly 
4 RdlteriPs 
5 Sldrt prqrammer 
6 Power bus harness. rnlsc 
7 SCR speed control 
8 Cdpacitor 

C Electrical System 

E Subtotal 

f PCS Structure 
I PCSframe 
2 Support brackels 

F Subtotal 

C Instrumenlation - Subtotal 

II Total 

I I I I 1  ICHT RADIATOR ASSEMBLY 

A HRL Radiator Assembly 
I Radiator 
2 Piping 

A Subtotal 

E LIC  Radiator Assembly 
I Radiator 
2 Piping 
3 lnsulal ion 

B Subtotal 

- Subtotal 

Ill Tolal 

C Radiator stringers & rings 

TOTAL EGS WEIGHT 

Fluid Inventory Summary: 

Scdium-Potassium Alloy INaKl 

Mercury IN1 
Polyphenyl Ether W 3 E I  

761 

1480 

[@ 

170 
67 
12 
98 
33 
23 

403 
~. 

258 
a3 

PI  
85 
86 
13 
51 
I I  

1230 

170 
43 
I2 
a 

~ 3L 

zsr 
20 
35 
16 
41 
33 

151 

170 
209 
31 6 
IM 
I5 

90 
I5  

I I45 

500 
_ ~ -  235 

735 

IXI 

__  

190 

1404 

904 

9?4 

202 
I7 
88- 

307 

MI 

2 

[ 18821 

8162 

430 

Iffl 

115 
734 
- 

WLlCHT BREAKDOWN 

Fluid 
Inventory 

Weight 
llbl 

29 

29 (NaKI 

8 
22 
I D  
13 
49 

Ih 
158 IN~KI 

17 

18 

58 

1 
95 

1fflmgI 

8 
24 

34 
33 
99 INaKl 
.- 

15 

30 

10 
55 (4WI 

-. 

_ _  
- 

-. _ _  
-. 
-. 
.. 
-. 
-. 

-. 

_ _  

_ _  

96 
48 

144 INaKl 

M 
10 

00 (4P3El 
.. ~- 

_ _  

Wel 
Weight 

IIhl 
~ 

7 w  

1480 

ma 
178 
89 
22 

111 
82 
:) 3 

m5 

331 
003 
142 
85 

144 
13 
52 

106 
32 

~~ .. 
I m8 

178 
67 
12 
M 

321 

m 

16 
77 
33 
10 

2w 

I70 
209 
316 
140 
15 

191) 

I5 
1145 

Mo 
~~ 235 ~ 

735 
IM 

m 

. .- 

on 
~. 

.- 

L431 

loo0 
78 

1078 

252 
27 
88 

3 7  

641 
- 

i?J 
W 6  

Table B - j  

Remarks 

S8DS reactor 

Adjusted lor reaclw kwt 

$Vet weight includes Item A7 

Wet weight includes Item C5 

Adjusted toHRL inventory(l1C plus I I I A I  

Includes 50 Ib lor radiation shield 
24 KVAR correction 

60' - 314" OD x ,035 
114' Min-k ?:;piiragm at b a s e d  HRL rad. 



1 

Fluid Inventory Summary: 

Salium-Potassium Atlny INaKl 

Mcrcury It@) 

Polyphenyl Ether 14P311 

Report No. 3386 
TABLE B -4 

EGS-3 Weight Breakdown 
t C S - 3  WEIGHT BREAKDOWN 

Dry 
Wright 

llbl __ 

761 

lm, 

12361 I 

110 
9h 
12 
114 
M 
25 

45 3 

M3 
613 
100 
85 
88 
I 3  
51 
11 
32 

I342 

170 
53 
12 
35 

270 

m 
35 
16 
47 
33 

I51 

218 
zo9 
316 
140 
I5 

190 
100 
n 

1215 

5iM 
235 
735 
120 

,4230 j 

1251 
34 

1285 

2x1 
m 

126 
37h 

192 

[ 2453j 

9 1 M  

54 I 
205 

121 
87 3 
- 

Fluid 
Inventory 

Weight 
llbl __- 

29 

29 INaKI 

X 
44 
10 
I5 
62 

72 
211 lNdKl 

22 

21 

hh 

I 
95 

a 5  l t q l  

n 
M 

43 
38 

119 lNdKl 

I 5  

M 

IO 
55 14P3EI 

122 

182 INaKl 
M~ 

M 
12 

72 l4P3El 

W et 
Weight 

IIbI 
~ 

190 

I m ,  

r2m 1 

178 
Id0 

22 
129 
qn 
.'5 

5V2 

437 
61 3 
1 h5 
R5 
154 

1 3  
52 

I D6 
32 

1657 

178 

12 
78 

351 

zo 
50 
16 
77 
33 
IO 

206 

83 

718 
209 
31 6 
140 

15 
190 
1M 
27 

1215 

5rm 
235 
735 
120 

j48761 

1373 
94 

1467 

m 
32 

126 
448 

792 

[ 2707 
9973 

Table R-lt 

Remarks _ _  

SBDS reactor 

Adlusted lor reactor kwt 

Adjusted lor higher pwer rating 

Adlusted lor Img inventory 
OD increased Io 2 25' 

W ~ r l  weight includes Item A7. 9 tuber 
Adjusted tor larger flow passages i n  TA 
Wet weight includes Item C5. 05 tubes 

Adjuslfd lor increased loop inventory 

Adjusted lo HRL inventory I I I C  plus I I IA l  

OD increased l o  2 25" 

Includes 50 Ib for radialion shield 
46 KVAR correction 

Po' - 2. E' 0.0. x ,035 

70' - 314' OD x ,035 
114 '  Min-k diaphragm at base 01 HRL rad 

I 
1 
I 
I 
I 
1 
1 
I 
I 
I 
1 
I 
1 
I 
1 
1 
I 
1 
1 



I 
I 
I 
I 
I 
1 
D 
I 
I 
1 
I 
1 
I 
I 
I 
I 
8 
I 
I 
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TABLE B-5 

EGS-4 Weight Breakdown 
E G S - 4  WEIGH1 BREAKDOWN 

Dry 
Weqht 

IIbl - Subsystem and Component 

NUCLfAR SYSTEM 

A. Reactor Assembly 

E. Shield 

I. Total 

POWER CONVERSION SYSIEM 

A Primarytaop 
I. NdK PMA 
2 Parasitic Id resistor 
3 Auxiliary start heat exchanger 
4. NaK expansion reservoir 
5. Piping 
6. Thermal insulation 
1. Boiler NaK invenlory 

A. Subtotal 

E. Mercury Rankine L q  
I. Boiler 
2 Turbine alternator assembly 
3. Condenser 
4. ng PMA 
5. Hg iniectwn system 
6. Valves 
1. Hg piping Ivaporl 
8. Hg piping tliquidl 
9. Thermal insulation 

E. Subtdal 

C. neat Relection L q  
I. HRL NaKPMA 
2. HRL N a K  expansion reservoir 
3. Valves 
4. Piping 
5. Condenser NaK inventory 

c. Subtdal 

0. Lubricant-Coolant Lmp 
I. UCPMA 
2. U C  expansion reservoir 
3. Valves 
4. Piping 
5. Thermal insutalion 
6. Component LIC inventory 

0. Subtotal 

I. Trdnslormer rwctor  assembly 
2. Lowtemperature conlrol assembly 
3. Inverter assembly 
4. Batteries 
5. Start programmer 
6. Power bus. hdrness. mlsc. 
1. SCR speed contrd 
8. Capacitor 

E. Electr ial System 

E. Subtotal 

F. PCS Structure 
I. PCS frame 
2. Support brackets 

F. Subtotal 

G. Instrumentation - Subtotal 

11. Iota1 

FLIGHT RADIATOR ASSEMBLY 

A. HRL Radiator Assembly 
I. Radiator 
2. Piping 

A. Subtotal 

E. LIC Radiator Assembly 
I. Radiator 
2. Piping 
3. Insulation 

E. Subtotal 

- Subtotal 

Ill. Tdal 

C. Radiator stringers 8 rings 

TOTAL EGS WEIGHT 

Fluid Inventory Summary: 

Sodium-Paassium Alloy INaKl 

Mercury IHgl 

Folyphenyt Ether 14P3EI 

129 

1475 

[??%I 

170 
67 
I 2  

114 
33 
23 

4L9 

280 
to3 
91 
85 
86 
13 
51 
I I  
32 

1252 

170 
41 
I2  
a 

253 

20 
35 
16 
47 
33 

151 

170 
m 
316 
140 
I 5  

190 
90 
28 

1158 

m 
-23. 

735 

Izo  

~- 

- 

- 

~- 

- -. 

$4 

m2 
x) 

832 

183 
16 
76 

275 

590 

_-- 

- 
mi1 
7989 

41 5 

189 

114 
178 
- 

Fluid 
I nvrntor y 

Weight 
I l b l  

~ 

29 
_ _  
29 INaKl 

8 
22 
IO 
I5 
49 

101 
211 INaKl 

-. 

17 

18 

58 

1 
95 

_ _  
_ _  
_ _  

- 
189ltQl 

8 
24 

34 

W I N a K I  

-. 

33 

15 

M 

IO 
55 14P3El 

-. 

_ _  
._ 

_ _  _ _  _ _  _ _  

_ _  

88 
48 

m 

136 INaKl 

9 
-. - 
9 l4P3EI 

_ _  

Table €3-5 

Wd 
Weqht 

IIbI 

758 

m 
1475 

178 

n 
129 
82 
23 

523 

m 

- 

604 
to3 
142 
a5 

144 
13 
52 

106 
32 

1581 

178 
65 
12 
64 

319 

20 

16 
71 
33 
10 

206 

110 
209 
316 
140 
I 5  

190 
W 
28 

1158 

Mo 

735 

120 

_ _  - 

m 

_ _  

2)5 

- _ _  

14642] 

890 

968 

233 
25 
16 

334 

YM 

78 

~ ~- 

[El 
m67 

Remarks 

Akanced reaciw 

Adiurted lw r e c t o r  kwt 

Boiler shell dia. incrmsrd to reduce dP in HRL 

Wet w i g h t  includes Item A7 

Wet weqht includes Item C5 

Adjusted to HRL i n v e n t w y l l l C  plus IIIAI 

Includes M Ib tw radiatw shield 
48 KVAR correction 

55' x 314" OD x ,035" 
114' Min-k diaphragm at base d HRL rad 



~ e p o r t  NO. 3 9 6  
TABLE B-6_ 

EGS-5 Weight Breakdown 
L G S - 5  W f l G H I  B R t A K D O W N  

c Ranlator strinqer5 R rinqs 
~ l 1 l 1 l O I d l  

1 1 1  lo td l  

TOTAL l C S  WEIGHT 

f l u i d  Inventory Summary 

Scdium-Potassium Alloy INdKl 

Mercury lHgl 

PolflhPnyl Ether 14P3tl 

Dry 

l!t!L 

Neight 

729 

I 4111 

' Z I W :  

I10 
61 
I ?  

114 
33 
?i 

41V 

2RO 
tdj3 
91 
R5 
835 
I 3  
51 
I I  
12 

I252 

I10 
41 
12 
a 

753 

20 
15 
10 
47 
33 

I51 

1 i n  
m 
31 b 
100 

I 5  

90 
28 

1158 

m 
235 
135 

la 

190 

1 

767 
Y) 

792 

182 
10 
13 

271 

515 

' 1 0 3 8  

1925 

471 

189 

114 
714 
- 

Fluid 
I nurntory 

Wuiilhl 
l l h l  

29 

29 INaKI 

X 
22 
10 
I 5  
49 

i n i  
211 INaKl 

17 

I X  

5R 

I 
95  

1.69 iHy1 

8 
? 3  

34 
33 
98 lNdKl 

I 5  

85 
48 

133 lNdKl 

50 
9 

59 14P3El 

w PI 
Weight 

l lh l  
~ 

758 

1470 

I 2 4  

116 
89 
22 

IT? 
R2 
24 

5 2  

404 
N13 
142 

R5 
144 

1 i  
52 

IO6 
32 

I ' m  

liR 
M 
12 
64 

)in 

m 
50 
16 
17 
33 
10 

206 

I in 
20) 
316 
100 

1') 
1911 

2R 
ll5R 

m 
735 
135 

120 

r4MI 1 

9n 

847 
1R 

925 

232 
75 
73 

330 

515 

l18@ 

Ro99 

Remarks __ 

Advancrd reactor 

Adlusted to reaclOr kw( 

, I  A +  iqhl includes Item A7 

wt wqh l  includes Item CS 

Adpr l t d  to  HRL inventory l l l c  phis I l l A l  

Includes Y) Ibs lor rddldtlon shield 
41 KVAR coirrctlon 

1 1 4 '  Min-k dldphrdgm d l  u s e  of HRL rad 

Table B-6 
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TABLE B-7 

EGS-6 Weight Breakdown 
E G S - 6  

Dry 
Weight 

I l b l  __ 

779 

1600 

12329 1 

170 
96 
12 

I 3 8  
P) 
21 

482 

356 
61 3 
106 
85 
88 
I 3  
51 
I I  
32 

i 355 

170 
52 
12 
35 

269 

20 
35 
16 
41 
33 

151 ~ 

223 
201 
316 
140 
I 5  

190 
1w 
42 

1235 

5M1 
235 
135 

I20  
43dl 

~~ 

i i x i  
34 

1217 

21R 
.m 

119 
351 

7 67 

i ~ 

V l l l l  

b10 

205 

127 m 

WEIGHT BREAKDOWN 

Fluid 
Inventory 

Weight 
(Ibl 

29 

29 INaKI 

8 
44 
10 
I 9  
69 

I 3 R ~  
288 INaKl 

22 

21 

66 

I 
95 

2OZIHgl 

8 
29 

43 

118 INaKi 
38- 

15 

M 

'0- 
55 14P3El 

115 
60 

175 tNaKl 

60 
12 

72 14P3LI 

W d  
Weight 

l lb l  

158 

1600 

1 2 5 8 )  

178 
140 
22 

157 
IOU 
21 

632 

516 
61 3 
I65 
85 

154 
13 
52 

106 
32 

I13h 

I I 8  
81 
12 
78 

3.19 

20 
M 
16 
77 
33 
I O  

206 

223 
m 
31 h 
140 

I I  

190 
Io(1 
42 

1235 

5w 
235 
135 

IX) 
I '  
1M1'I 

1298 
94 

I392 

27 8 
32 

119 
129 

767 

[2588' 

9959 

Subsystem and Component 

I. NUCLEAR SYSTEM 

A. RPdCtOr Assembly 

6. Shield 

I. Total 

11.  POWER CONVERSION SYSTEM 

A. Primary Loop 
I. NaK PMA 
2 Parasitic load resistor 
3. Auxiliary start heal exchanger 
4. NaK expansion reservoir 
5. Piping 
6.  Thermal insulation 
7. Boiler NaK inventory 

A Subtotal 

B Mercury Rankine Loop 
I. Boiler 
7 Turbine alternator assembly 
3 Condenser 
4 Hg PMA 
5. tlg injpction system 
h Valves 
7 Hg piping lvaporl 
8 Hg piping II iquidI 
9. Thermal insulation 

E. Subtotal 

C Heat Rejection Loop 
I. HRL NaK PMA 
2. HRL NaK expansion reservoir 
3. Valves 
4. Piping 
5. Condenser NaK invenlory 

C. Subtotal 

D Lubricant-Coolant Lmp 
I. U C P M A  
2. UC expansion reservoir 
3. Valves 
A Piping 
5 lhvrrndl insulation 
6 .  Component LIC invenlory 

D Subtotal 

E EleLtrical System 
I Tramformer reactor dssembly 
2 I ow-ItmDPrdture control assemblv 

Remarks 

Advanced reactor 

Adjusled to reactor kwt 

Adjusted lor higher power rating 

Adjusted lor larger loop inventory 

Boiler shell dia. increased lor  low A P  

Wet weight includes Item A7. 9 tubes 

Wet weight includes Item C5. 63 tuhes 

Adjusted to HRL inventory ( I  IC plus I I I A l  

3 Inverter dssembly 
4 Ratterier 
5 5tdrt prqrammer 
6 i'owtr thus harness 
1 \ C R  s p w J  iontrol  
X Cdpdritor 

L 

I P( 5 5 t r u i t i i r r  
I rc5 trdmP 
2 5upporl hidikP1s 

I 

6 In\ l rumentdl ion 

II 

I l l  I L I C H I  K A n l A l O R  ASSlMBLV 

A HRL Rddldtor A\wmbly 
I Rddldlol 
2 Pipinq 

A 

6 L C Radiator Assembly 
I Radiator 
2 Piping 
1 Insulation 

B 

Incliidiss 50 Ibs tor radiation shield 
71 KVAR correction 

40' - 2 ? 5 '  OD x .03Y' 

70' - 314, o D x 015' 
114' Min-k dlaphraqm at base 01 HRL rad 

C Rddialor str inqrrs & rings 
Sii l i total 

I II M a l  

TOlAL fG5 WEIGHT 

Fluid Inventory Summary 

Scdium-Potassium Alloy INaKI 

Mercury tHgl 

Polyphenyl Ether t4P3El 

Table B-7 
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APPENDIX C 

ANALYSIS OF TURBINE E F F I C D N C Y  A S  AF.E3CTED 
BY PRESSURE RATIO AND NUMBER OF STAGES 

me SNAP-8 performance po ten t i a l  s tudy requi res  ana lys i s  of t h e  system per -  

formance when the  turb ine  i n l e t  and ou t l e t  pressures  are changed. 

ob ta in  more accura te  r e su l t s ,  it was necessary t o  eva lua te  the  e f f e c t  of changing 

p r e s m r e s  on tu rb ine  e f f i c i ency .  

I n  order  t o  

I n  order  t o  minimize the  turbine modif icat ion required,  it was assumed t h a t  

Thus, only blade p r o f i l e s ,  t k e  t u rb ine  and wheel p i t ch  diameters a r e  he ld  constant .  

flow a r e a s ,  and number of pressure s tages  were considered. The number of pressure  

s tages  recpired i s  based on the  overa l l  p ressure  r a t i o ,  t he  r e s u l t i n g  b lade  v e l o c i t y  

to nozzle e x i t  v e l o c i t y  (u/c) r a t i o  and the  nozzle area r a t i o  requirements. 

eva lua t ion  was based on the  equations i n  AGC TM 394:63-1-112. 
e f f ic i8ncy  i s  : 

The 

The o v e r a l l  

- c ' 7 s  

'T - (mad )T 
where 

= s t age  e f f i c i ency  
?s 

(AH ) = i s en t rop ic  enthalpy change i n  s t age  

(A2 ) = i s en t rop ic  enthalpy change for e n t i r e  tu rb ine  pressure  r a t i o  

ad s 

ad T 

The equat ion f o r  s tage  e f f i c i ency  is :  

where n r e f e r s  t o  s tage  number 

= s t age  diagram ef f ic iency  ? h i  

% = q u a l i t y  of mercury vapor a t  s t age  i n l e t  

Ls = s e a l  losses f a c t o r  

Alls = scavenging loss 

A$ = blade pumping loss  



Analysis of Turbine Efficiency as Affected by 
Pressure Ratio and Number of Stages (cont.  ) 

A? = loss  due t o  l i q u i d  mercury i n  vapor 

AT = d i s k  f r i c t i o n  lo s s  

m 

d 

The equations defining these  terms follow: 

Report No. 3386 

where 

u = blade ve loc i ty  - f t / s e c  

= i d e a l  nozzle ve loc i ty  =J2"(&ad)S - f t / s e c  

= blade ve loc i ty  c o e f f i c i e n t  

% = t i p  leakage co r rec t ion  f a c t o r  

Kf = f i l l i n g  and emptying loss f a c t o r  

$, = nozzle v e l c c i t y  c o e f f i c i e n t  

cO 

$B 

Q: = nozzle ang le  1 

I n  t h i s  ana lys i s ,  t he  following design parameters were held constant :  

Wheel p i t c h  diameter = 5 . 1  inches 

R P M  = 12,000 

Radial t i p  c learance = 0.040 inch 

Blade v e l o c i t y  coef.  = 0.8203 ( f i rs t  s t age )  

Nozzle v e l o c i t y  coef. = 0.9459 
Nozzle ang le  cosine = 0.956 

KL = 0.7709 

S u b s t i t u t i n g  these values i n t o  t h e  s t a g e  diagram e f f i c i e n c y  expression and re- 

l r -  1 - 
2.166 2.86 

- .. . 

c -2 
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Pressure Ratio and Number of Stages (cont. ) 

The value of ($1, t o  be used i n  evaluat ing t h i s  expression, i s  given by: 

and 

where 

t = blade p i t c h  = 0.2025 inch 

a = a r c  l eng th  f o r  each admission a r c  

np = number of admission a r c s  = 2 f o r  1s t  s t age  

N 

D = wheel p i t c h  diameter inches 

W 
= admission a r c  f r a c t i o n s  26 5 5 = 0.38 x 11,200 P 

where 

0.38 = admission a r c  f r a c t i o n  f o r  265 ps i a  t u r b i n e  i n l e t  pressure and 
11,200 lb /h r  mercury flow; P4 i s  new i n l e t  pressure;  and 
new flow rate. 

i s  

Subs t i t u t ing  and simplifying 

2.81 ~4 
(K-& = 1 - - W 

where N i s  t h e  number of s tages .  Using  these two expressions,  t h e  equation f o r  ST 
t h e  f i rs t  s t age  diagram e f f i c i e n c y  becomes : 

2.166 (NsT) 

(mad 
L 
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The pumping losses  for t he  f i r s t  s t age  i s  given by 

l/NST 
(1.383 - 0.01048 

p4 
= 0.00045 

where P5 i s  t h e  turbine exhaust pressure.  

The d i s c  losses  a r e  given by: 

l’NST 
= 0.000383 

I 

1 
1 

With these  equations t o  so lve  f o r  t he  m l u e s ,  t h e  equation f o r  the  f i r s t  s t a g e  

e f f i c i e n c y  which follows can be evaluated f o r  d i f f e r e n t  i n l e t  pressures  and flow 

r a t e s .  

Th? ana lys i s  i s  now c a r r i e d  out f o r  t he  second s t a g e ,  using the  second s t age  1 
constants  as follDws: 

The equation for t h e  second s t a g e  diagram e f f i c i e n c y  becomes: 

1/2 2.86 NST 

/ A U  \ - 1 i 
1 

c-4 
I 
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The equation for t h e  change i n  second stage pumping l o s s e s  becomes: 

- 

P4NST (p5) 2’NST k .412  - 0.00569 (2) l/NST 1 
a Tf p4 

(A? ) = 0.000873 
P 2  

and the  equation f o r  t h e  change i n  second s t age  d i s k  l o s s e s  becomes: 

P N  4 ST [Q(hsT 

‘.p4 
= 0.000504 

The values obtained from t hese  equations can then be subs t i t u t ed  i n t o  t h e  

following equation f o r  t h e  e f f i c i e n c y  of t he  second t u r b i n e  s t a g e  which follows: 

The two s t age  e f f i c i e n c i e s  can now be s u b s t i t u t e d  i n t o  t h e  o v e r a l l  t u rb ine  

e f f i c i e n c y  equation below. 

Evaluation of t hese  equations f o r  d i f f e r e n t  pressure r a t i o s  and number of 

s tages  provides t h e  tu rb ine  e f f i c i e n c i e s  required t o  complete the  s t a t e -po in t  

a n a l y s i s  study. 

The r e s u l t s  of t h e  evaluat ion of t hese  equations are presented i n  Table B-1 
i n  t h i s  appendix. 

c-5 
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TABLE C -1 

TURBINE EFFICIENCY VS PRESSUm RATIO RESULTS 

Turbine Eff ic iency  - % 
p5 P4 = 200 2 50 300 3 50 400 450 

~~ 

8.5 63.0 63.0 62.5 62.0 61.5 61.0 

14.5 63.5 63.5 63.0 62.5 62.0 61.5 

20.5 64.0 64.0 63.5 63.0 62.5 62.0 

26.5 64.0 64.0 63.5 63.0 62.5 62.0 

32.5 64.0 64.0 64.0 63.5 63.0 62.5 

P4 = tu rb ine  i n l e t  p ressure  ( p s i a )  

P5 = tu rb ine  e x i t  pressure  ( p s i a )  

Table C-1 
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